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ABSTRACT 

A theoretical investigation of the ducted turbu- 
lent mixing of coaxial streams is presented. The effects of 
equilibrium chemical reactions in the mixing layer are in- 
cluded in the analysis.  In Part I, the theory is developed 
for ducted mixing systems in which the inviscid portions of 
the flow are assumed to be one-dimensional.  The integral 
method is used, and the mixing zone velocity profiles are 
assumed to be similar. Turbulent Prandtl and Lewis numbers 
are assumed to be unity, and the turbulent shear stress 
along one control surface in the mixing layer is computed by 
use of a semi-empirical model for the eddy viscosity. The 
theory is formulated to include the downstream regime where 
the mixing layer extends across the entire duct. The system 
of integral equations is transformed into a form suitable for 
numerical solution by standard methods.  In Part II, the theory 
is extended to include the influence of a nonuniform supersonic 
inviscid core flow.  A technique is developed for coupling the 
numerical solution of the inviscid core flow (from the method 
of characteristics) with the solution of the integral equations 
for the mixing layer. The theory is correlated with low speed 
experiments, with supersonic air-air ejector experiments and 
with experiments on ducted rocket-air mixing. The correlations 
show that the theory gives satisfactory results for the per- 
formance of ducted rocket-air mixing systems which are 
representative of air augmented rockets. 
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SECTION 1 
INTRODUCTION 

Ducted turbulent mixing of coaxial streams occurs 

in many devices of practical interest.  Typical examples are 

the jet pump (or air—air ejector) and composite propulsion 

systems such as the air augmented rocket (Refs. 1, 2).  For 

propulsive applications one must consider the possibility 

that exothermic chemical reactions will occur in the mixing 

layer. 

The basic objective of this research is to develop 

a theory to describe the ducted turbulent mixing of coaxial 

streams, including chemical reactions.  Emphasis has been 

placed on relatively long mixing systems in which the mixing 

layer may extend over most or all of the duct cross section 

at the duct exit plane.  The duct pressure distribution will 

be strongly influenced by the thick mixing layers, and will 

be very different from the inviscid pressure distribution. 

In other words, this may be considered a "strong viscous 

interaction" problem. 

Consider the mixing system shown schematically in 

Fig. 1, in which the primary and secondary fluids are speci- 

fied.  The specific objective of this work is to predict the 

secondary mass flow rate, w , and the duct wall pressure 

distribution if the following parameters are prescribed: 

1. Geometry 

2. Primary (central) stream initial conditions 

3. Secondary stream stagnation pressure, Poa» 

and stagnation temperature, T 

4. Back pressure, p. 

Three distinct flow regimes are shown in the 

mixing flow field of Fig. 1.  In the first regime, turbulent 

mixing occurs between the inviscid secondary flow and the 
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Fig. 1   Schematic of Ducted Mixing System 
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core of inviscid primary flow.  In the second regime, the 

inviscid core has been dissipated, but a region of inviscid 

secondary flow exists near the duct wall.  The third regime 

occurs after the mixing layer has spread to the duct wall, 

and the flow is entirely turbulent.  The mixing is essen- 

tially free turbulent in nature in the first and second 

regimes, although not isobaric. 

Several modes of operation are possible for a 

ducted mixing system when the primary stream is initially 

supersonic and the secondary stream is initially subsonic. 

These operating modes are distinguished by the factor which 

limits the secondary mass flow rate, wo.  The "upstream ft 

choking" mode occurs when the back pressure is relatively 

low, and the secondary stream static pressure is low 

relative to the primary flow (Fig. 2a).  The primary stream 

expands, causing the secondary flow to choke at some station 

near the inlet of the mixing duct, and the secondary flow 

is supersonic downstream of the choking station.  Fabri and 

Paulon (Ref. 3) called this mode the "supersonic regime" in 

their work on air—air ejectors.  As the secondary stream 

stagnation pressure is increased, the choking station will 

move upstream.  If the secondary stagnation pressure is 

increased sufficiently the choking station will be fixed at 

the initial section, with the primary nozzle either correctly 

expanded or overexpanded.  Fabri and Paulon called this 

limiting case of the upstream choking mode the "saturated 

supersonic regime." The secondary stream minimum area is 

a function only of the geometry, and the mass flow, w , is 
St 

directly proportional to p  in this limiting case. 
Oct 

The "downstream choking" mode (Fig. 2b) is en- 

countered when the back pressure is low, and w is limited a 
by choking of the flow at or near the duct exit.  The 

secondary flow is subsonic throughout the duct.  This mode 
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will probably not occur in a cylindrical or divergent mixing 

duct unless the primary and secondary fluids have greatly 

different densities, or unless chemical reactions occur in 

the mixing process.  The downstream choking mode is impor- 

tant for certain propulsive applications. 

The "back pressure dependent" mode of operation 

(Fig. 2c) occurs when the back pressure, p., is sufficiently 

high to unchoke the duct flow.  The secondary flow is subsonic 

throughout the duct, and the duct exit pressure exactly 

matches the back pressure.  Fabri and Paulon called this mode 

the "mixed regime" and it is commonly encountered in jet 

pump applicat ions. 

If it is to be considered adequate, a theory for 

the mixing duct flow must be capable of predicting the per- 

formance in each of the operational modes shown in Fig. 2. 

It should be noted that certain limiting cases of 

ducted mixing can be successfully analyzed by application of 

one—dimensional theoretical concepts (Ref. 3, for example). 

If the mixing duct is relatively long and of constant cross 

section, and the system is operating in the back pressure 

dependent mode, then the performance can be predicted by 

assuming that the flow is fully mixed and uniform at the duct 

exit.  If the initial conditions are specified, then overall 

conservation equations for momentum, mass flow and energy 

can be solved for the one—dimensional flow conditions at the 

duct exit.  This one—dimensional theory gives no information 

about the duct length required to achieve complete mixing 

because the equations include no characteristic length 

scale.  Also, the one—dimensional approach is not applicable 

to mixing ducts of variable cross section because the unknown 

axial wall pressure forces cannot be predicted.  The detailed 

mixing duct flow must be treated in order to compute the un- 

known wall pressure integral in variable area configurations. 
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Some limited success has been achieved in analyzing 

constant area ejector systems operating in the upstream 

choking mode by application of "quasi-one-dimensional" con- 

cepts.  Fabri and Paulon (Ref. 3) and Kochendorfer and 

Rousso (Ref. 4) have used such quasi—one—dimensional approaches. 

Viscous effects are neglected, and again, no characteristic 

length appears in the equations.  The analysis is limited 

to mixing ducts of constant cross sectional area.  The 

primary stream is assumed to expand isentropically and one— 

dimensionally, while the secondary stream contracts.  Fabri 

and Paulon assumed that the outer stream is isentropic and 

that M = 1 at the choking section.  Solution of the com— 

bined momentum equation for both streams makes it unnecessary 

to assume that the primary and secondary pressures are equal 

at the choking section.  Kochendorfer and Rousso formulated 

their analysis somewhat differently.  They assumed that 

M„ = 1 and that the primary and secondary pressures are a 
equal at the choking section.  The combined stream momentum 

equation was used to define the secondary stream total 

pressure at the choking section. 

The key assumption in these quasi—one—dimensional 

approaches is that the area of the primary stream at the 

choking section is the same as the one—dimensional isentropic 

area at the same static pressure.  This assumption is approxi- 

mately true when the primary nozzle flow is nearly uniform 

and not too highly underexpanded, but can be seriously in 

error in many practical cases.  The neglect of viscous 

effects is less serious for supersonic ejectors with rela- 

tively large secondary flows.  For this case, Chow and Addy 

(Ref. 5) have shown that viscous effects are small.  It 

should be noted, however, that viscous effects are important 

for an air—air ejector operating with low or zero secondary 

flow rates. 

8 
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The quasi—one—dimensional theories are simple to 

apply and give good engineering results for many constant 

area ejector configurations.  These theories, however, are 

too limited in scope for application to many ejector problems, 

In Part I of this report, a theoretical model is 

developed for the ducted mixing system, based on the integral 

form of the steady boundary layer equations.  Both the in- 

viscid primary and secondary streams are assumed to be one- 

dimensional.  The mixing zone chemistry is assumed to be 

either frozen or in equilibrium.  The turbulent shear along 

one control surface in the mixing layer is computed by means 

of a semi—empirical function for the eddy viscosity.  This 

theory, hereafter called the "1—D Core Theory," agrees well 

with experimental results for subsonic mixing flows, but is 

inadequate when the primary stream is supersonic and non- 

uniform. 

In Part II of this report, the first regime theory 

is extended to include treatment of the inviscid core flow 

with the irrotational method of characteristics (This theory 

will be called the "2—D Core Theory.")«  Inclusion of the 

method of characteristics greatly complicates the solution; 

however, the modified theory can be applied to supersonic 

primary flows which are initially nonuniform (conical pri- 

mary nozzles, for example), or to cases where the primary 

nozzle is underexpanded. 

It should be noted that the 2-D Core Theory differs 

from the 1—D Core Theory only in the first regime in which 

there is an inviscid core of primary flow (Fig. 1).  The two 

theories are identical in the second and third regimes, 

i.e., after the inviscid core has been dissipated. 

Most of the comparisons with experimental results 

have been made with the 2—D Core Theory.  The 1—D Core Theory 

has been correlated only with some low speed experimental 

results, both to establish the empirical incompressible eddy 
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viscosity constants and to establish the validity of the 

theory for low speed flows. 

Many assumptions have been made in the analytical 

model developed during this investigation.  Some of these 

assumptions are necessary because the current knowledge of 

turbulent flow processes is very meager, even for flow con- 

figurations much less complex than the one considered here. 

Other assumptions have been made to render the analytical 

model tractable from a mathematical point of view.  Recog- 

nizing the many simplifications in the theoretical model, 

it is essential that its validity be established by detailed 

comparisons with experiment in the flow regime of interest. 
Extensive experiments have been made by the author and his 

co-workers at AEDC on a ducted mixing system in which the 

primary flow was the exhaust from a fuel-rich rocket (Refs. 

6, 7).  The secondary stream was room temperature air, and 

various mixing duct configurations were used so that all of 

the operating modes shown in Fig. 2 were encountered.  Cor- 

relations of the 2-D Core Theory with these rocket-air mixing 

experiments, as well as with experimental results for air- 

air ejectors, are discussed in Sections XVI and XVII. 

10 
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SECTION II 
SUMMARY OF ANALYTICAL APPROACHES FOR TURBULENT MIXING 

The purpose of this section is to give a brief sur- 

vey of the various methods which have been used in the analysis 

of free turbulent mixing, and to discuss the methods in view 

of the current state of experimental knowledge.  A complete 

review of the extensive mixing literature is not intended; 

the objective is to mention the various analytical methods 

so that the approach taken in this investigation can be viewed 

in historical perspective.  More detailed information on the 

earlier work in this field can be found in the excellent 

monograph of Abramovich (Ref. 8) and in Refs. 9*11. 

The analysis of free turbulent mixing is neces- 

sarily semi—empirical because no fundamental quantitative 

flow model for turbulence is currently available. Numerous 

experimental investigations, however, have established cer- 

tain approximations which provide reasonably accurate predic- 

tions of the mean flow field, at least for relatively simple 

flow configurations.  All of the analytical approaches have 

incorporated the simplification that the complex fluctuating 

turbulent flow field can be replaced with an equivalent steady 

flow.  The fluctuating nature of the flow is usually treated 

by use of "apparent" turbulent transport properties which 

are analogous to molecular transport properties in laminar 

flow.  The usual boundary layer approximations have been 

used in most analyses.  Most of the existing analyses have 

been made for isobaric flow, i.e., jets, wakes and mixing 

layers surrounded by uniform inviscid streams of large ex- 

tent. 

1.   Low Spood Mixing (Constant Density) 

Models for turbulent shear — In 1925 Prandtl 

formulated his famous mixing length theory for turbulent 

11 
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shear.  He hypothesized that the mean value of the fluc- 

tuating velocity component in the turbulent field is equal 

to the product of the local mean velocity gradient times a 

characteristic mixing length, I.     The mixing length is 

proportional to the local width of the mixing layer for free 

mixing (ü = cb), and is assumed to be constant across the 

layer.  A small element of fluid is assumed to conserve its 

axial velocity while moving transversely over the mixing 

length.  The turbulent shear stress (Reynolds stress) in 

the axial direction is 

where c is an empirical constant, u is the mean axial 

velocity, p is the density, b is the width of the mixing 

layer and u' and v' are the local components of the fluc- 

tuating velocity. 

Taylor's vorticity transport theory is based on 

a similar mixing length concept, with the vorticity of a 

fluid element being conserved over the mixing length.  Both 

Prandtl's and Taylor's theories assume that the eddy length 

scale, £,   is much less than the local width of the mixing 

layer.  Taylor's vorticity transport theory results in the 

same expression for turbulent shear as Prandtl's mixing 

length theory for two—dimensional mixing.  Because of its 

complexity in all but the simplest flows, Taylor's theory 

has been used much Less frequently than the Prandtl mixing 

length theory. 

The Boussinesq concept of an "apparent" or "eddy" 

viscosity has proven to be very useful in the analysis of 

free mixing problems.  The axial shear stress is 

r = -f «'*-' - ?e  ^"v^u 
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where € is the eddy kinematic viscosity. The eddy viscosity 

is not a fluid property, but is related to the dynamics of 

the particular problem. 

Prandtl's mixing length theory gives the fol- 

lowing relation for the eddy viscosity: 

£ = c*±>Z 

^ 

Thus, Prandtl's mixing length theory states that the eddy 

viscosity varies with Idu/dyi across the mixing layer. 

In 1942 Prandtl proposed another model for the 

turbulent eddy viscosity, based on the assumption that v'i 

(equivalent to e) is related to the local mean velocity 

gradient across the mixing layer.  This model, which implies 

that the turbulent eddy scale is of the same order as the 

mixing zone width, yields the following expression for the 

eddy viscosity: 

e= kb(LLme,x  - Umin) 

k is an empirical constant, u   is the maximum velocity in 

the mixing layer and u .  is the minimum velocity in the 

layer.  The eddy viscosity is assumed to be constant across 

the mixing layer, or a function of only the axial coordinate. 

This Prandtl eddy viscosity model has been widely applied to 

a variety of free mixing problems because of its mathemati- 

cal simplicity, and because the results agree fairly well 

with experiment for many flow configurations. 

Methodsof solution — The two most widely used 

analytical techniques for low speed mixing have been (1) 

finding similarity solutions to the boundary layer equations, 

and (2) the von Kärmän integral method. 
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The early attempts to solve free mixing problems 

were primarily limited to finding similarity solutions. 

Using the Prandtl mixing length theory for turbulent shear, 

Tollmein (Ref. 12) found solutions for (1) the two-dimensional 

mixing layer between a semi—infinite stream and a medium at 

rest, (2) the two—dimensional jet flowing into a medium at 

rest, and (3) the axisymmetric jet flowing into a medium at 

rest. 

Goertler (Ref. 13) applied the Prandtl eddy 

viscosity model to the two-dimensional mixing layer problem, 

and obtained solutions which correlated well with the experi- 

mental results of Reichardt (Ref. 14). 

Early experiments on fully developed low speed 

mixing zones and jets showed clearly that the mean velocity 

profiles exhibit shape similarity, i.e., all profiles can 

be made approximately congruent if suitably normalized.  These 

early experiments also indicated that the width of the fully 

developed mixing layer increases linearly with axial distance, 

x.  This linear relation between b and x is inherent in the 

analyses of Tollmein and Goertler.  Tollmein assumed that 

£  - ex, with the proportionality constant relating b and x 
being absorbed into the empirical constant, c.  Similarly, 

Goertler assumed that € = kx (u  —u . ). v max mm' 

The experimental observation that the fully de- 

veloped velocity profiles are approximately similar has led 

to the widespread use of the von Karman integral method for 

the solution of free mixing problems.  In the integral 

method the velocity profile shape is prescribed, usually 

based on prior experimental information, and the boundary 

layer equations are satisfied only on the average across 

the mixing layer.  It is a well known characteristic of the 

integral method that the overall results are relatively in— 
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sensitive to the profile shape chosen, as long as the shape 

is approximately correct. 

Kuethe (Ref. 15) was the first to use the integral 

method for the solution of free mixing problems.  He ob» 

tained solutions for the two—dimensional mixing layer 

between two streams flowing at different velocities. Later, 

Squire and Trouncer (Ref. 16) applied the integral method to 

the solution of the axisymmetric two stream mixing problem. 

The solutions of Kuethe and of Squire and Trouncer 

were obtained by using the Prandtl mixing length theory to 

compute the turbulent shear in the mixing layer.  As the 

integral method is usually applied, with the shear evaluated 

at one fixed point in the normalized velocity profile, 

Prandtl*s mixing length and eddy viscosity theories give 

identical results.  Both theories give the same functional 

form for the characteristic shear, i.e., proportional to 

<umax-umin)2- 
Mixing with finite secondary velocities - It has 

been seen that Prandtl*s theories for turbulent shear have 

been applied to mixing with finite secondary velocities, 

even though the experiments which guided Prandtl's formula- 

tion of these theories were made only with zero secondary 

velocity.  Both theories predict that the mixing rate de- 

creases rapidly as the velocity ratio, u . /u   , is min max 
increased, and that no mixing at all occurs when u   = u . . 

Experiments, however, have shown that the mixing rate of 

species is quite large when u.^ = u ,_, (Ref. 17).  Fejer, max   min 
et al. (Ref. 17) give an excellent discussion of this pro- 

blem of coaxial stream mixing when the secondary velocity 

is relatively large compared to the primary velocity. 

Forstall and Shapiro (Ref. 18) made a series of 

experiments on coaxial stream mixing in the range of secondary- 

primary velocity ratios from 0.2 to 0.5.  It was found that 
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the analysis of Squire and Trouncer, based on mixing length 

theory, predicted the experimental results fairly well at 

the lower velocity ratios, but deviated considerably from 

the experimental results at a velocity ratio of 0.5. 

In general, the Prandtl theories for turbulent 

transport should be applied with caution when the secondary- 

primary velocity ratio exceeds about 0.3. 

Heat and mass transfer — Forstall and Shapiro 

investigated the mass transfer in their experiments by use 

of a tracer gas in the primary field.  They also summarized 

the results of other investigators on heat and mass transfer 

in free turbulent mixing.  In general, heat and mass diffuse 

at the same rate (unity turbulent Lewis number), but faster 

than does momentum.  The average value of the turbulent 

Prandtl (and Schmidt) number is approximately 0.7 for low 

speed mixing. 

2.   Variable Density Mixing 

The Prandtl theories for turbulent shear give 

reasonably good results for nearly constant density mixing, 

as long as the secondary velocity is small relative to the 

primary velocity.  When the mixing is accompanied by large 

density gradients in the layer, the current state of know- 

ledge is much less satisfactory. 

Large transverse density gradients in the mixing 

zone may be caused by: 

1. Large difference in the inviscid stream Mach 

numbers (compressibility effect). 

2. Large difference in the temperature and/or 

compositions of the inviscid streams. 

3. Exothermic chemical reactions in the mixing 

zones. 
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All of these factors occur simultaneously in the most com- 

plex cases of interest. 

The influence of density gradients on the free 

turbulent eddy viscosity is currently a source of speculation. 

Those who apply Prandtl's low speed shear theories directly 

to variable density mixing problems assume that the density 

gradient has no influence on the eddy viscosity distribution 

in the mixing layer. At the other extreme are those who use 

the compressibility transformation technique,   which implies 

a large influence of density on the eddy viscosity.  The 

reason for the uncertainty is that the computed velocity 

profiles are relatively insensitive to the distribution of 

eddy viscosity across the mixing layer.  Consequently,   it is 
very difficult to determine the eddy viscosity distributions 

from mean flow measurements in variable density mixing ex- 

periments.  Unfortunately, very precise measurements in a 

mixing system with very large density gradients have not yet 

appeared in the literature. 

Because of the insensitivity of the mean flow pro- 

files to the eddy viscosity model chosen, greatly different 

theories have predicted mean flow profiles which agree 

fairly well with the available experimental profiles.  The 

empirical constants in the eddy viscosity model, however, 

usually must be adjusted to correlate the experimental 

growth rate of the mixing layer. 

Methods of solution — The various techniques for 

analyzing variable density mixing include (1) numerical so- 

lutions of the boundary layer equations, (2) compressibility 

transformations, (3) linearized solutions of the boundary 

layer equations, and (4) integral methods. 

Vasiliu (Ref. 19) obtained numerical solutions for 

the problem of the mixing and combustion layer along the 

boundary between a supersonic rocket plume and surrounding 
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air stream.  The axial pressure gradient was prescribed from 

a prior inviscid analysis, and finite rate chemistry was in- 

cluded in the mixing analysis.  The eddy viscosity was assumed 

to be a function of only the streamwise coordinate, and non- 

unity (but constant) turbulent Prandtl and Lewis numbers 

could be used.  Such solutions are a tribute to modern com- 

puter technology, but unfortunately the current uncertainty 

about turbulent transport properties makes it doubtful 

whether this approach is any more rewarding than simpler 

methods.  The current knowledge about chemical reaction rates 

in turbulent flows is even poorer than that about turbulent 

transport.  After the knowledge about turbulent transport 

and chemical reaction rates has progressed, the numerical 

technique will undoubtedly become the most powerful approach 

for free mixing problems. 

Mager (Ref. 20) proposed a compressibility trans- 

formation of the boundary layer equations which is the 

turbulent counterpart of the Howarth transformation for 

laminar flow.  Ting and Libby (Ref. 21) applied Mager's 

transformation to free turbulent mixing and derived an ex- 

pression for the eddy viscosity.  Libby (Fef. 22) analyzed 

isobaric coaxial jet mixing, including equilibrium 

chemical reactions, with the compressibility transformation 

technique.  The corresponding incompressible solutions were 

obtained from linearized equations incorporating the Prandtl 

eddy viscosity model.  The turbulent Prandtl and Lewis num- 

bers were assumed to be unity. A reference density appears 

in the transformation, and this must be chosen arbitrarily 

because the theory offers no guidance on this subject. 

The compressibility transformation predicts the 

largest distortion of the incompressible velocity profile 

shape of any of the methods in current use.  The available 

experimental results, although limited, do not tend to sub- 
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stantiate the profile distortion predicted by the compressi- 

bility transformation (Ref. 23, for example).  In fact, 

Peters (Ref. 24) used this experimental observation that 

the velocity profile shape is apparently invariant to 

develop a speculative model for the variable density eddy 

viscosity. 

Kleinstein (Ref. 25) presented a linearized solu- 

tion of the compressible boundary layer equations for 

isobaric coaxial stream mixing.  He assumed that the product 

p£ is a function of only the axial coordinate.  One is in- 

clined to prefer Kleinstein's solution over the compressi- 

bility transformation solution because it predicts less 

distortion of the incompressible profile shapes. 

Because the mixing zone velocity profiles are in- 

sensitive to transverse density gradients, the integral 

method is useful for analyzing variable density mixing 

problems.  The normalized profile shape is usually assumed 

to be the same as the constant density profile shape.  One 

advantage of the integral method is that it is relatively 

easy to include the effects of streamwise pressure gradients. 

Korst, et al. (Ref. 26) have used the integral 

technique quite successfully to analyze the two-dimensional 

compressible mixing layer, with application to the flow past 

back steps.  Warren (Ref. 27) and Donaldson and Gray (Ref. 

28) have used the integral method to analyze the variable 

density mixing of an axisymmetric jet with a quiescent 

medium.  Donaldson and Gray also proposed a simple com- 

pressibility correction to the Prandtl eddy viscosity model, 

based on a characteristic Mach number in the mixing layer. 

Heat and mass transfer — As is the case for the 

eddy viscosity, the relative rates of transport for heat, 

mass and momentum are not well understood for variable 
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density mixing.  Alpinieri (Ref. 29) and Zakkay, et al. 

(Ref. 30) made a series of experiments on nonreactive co- 

axial stream mixing.  The outer stream was either subsonic 

or supersonic air, and the jet fluid was either hydrogen, 

helium, argon or carbon dioxide.  In addition to showing that 

the mixing rate is not zero when the streams have equal 

velocities, these experiments indicated that heat and mass 

tend to diffuse faster than momentum. 

Zakkay, et al. evaluated the centerline values of 

the turbulent Schmidt and Lewis numbers for their various 

experiments, and found a great deal of scatter in the re- 

sults.  Most of the Schmidt numbers fell between 0.4 and 2.0. 

Somewhat less scatter was observed for the Lewis number 

results, with most of the data falling between 0.5 and 1.2. 

These results show that it is extremely questionable whether 

the relative transport of momentum, heat, and mass can be 

accurately represented by constant values of the Prandtl 

(or Schmidt) and Lewis numbers.  No experimental results 

have come to the attention of the author on the relative 

rates of transport of momentum, heat and mass for mixing 

with simultaneous chemical reactions. 

3.   Ducted Coaxial Stream Mixing 

When the two streams mix inside a duct, the axial 

pressure gradient is not prescribed, but must be computed 

as an additional unknown parameter in the flow field solu- 

tion. 

Mikhail (Ref. 31) used the integral method to 

analyze the low speed flow in a constant area jet pump.  He 

assumed that the mixing zone velocity profile could be 

represented by a cosine function, and used Prandtl's mixing 

length theory to evaluate the shear along one control sur- 

face in the mixing zone. 
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For ducted mixing with large density gradients, re- 

latively few analyses have come to the attention of the author.* 

Emmons (Ref. 32) treated the flow in the mixing duct of an air 

augmented rocket by numerical solution of the boundary layer 

equations.  Finite rate chemistry was considered in the mixing 

layer, although with a highly simplified reaction model.  The 

eddy viscosity was assumed to be a function of only the stream- 

wise coordinate.  Emmons' paper is very brief and it is not 

clear how he treated the axial pressure gradients.  He ap- 

parently assumed the inviscid portions of the flow to be one- 

dimensional, although this point is also unclear. 

Peters, et al. (Ref. 6) used the integral method 

to analyze ducted coaxial stream mixing with equilibrium 

chemical reactions.  The turbulent Prandtl and Lewis numbers 

were assumed to be unity, and the normalized mixing zone 

velocity profile was assumed to be a cosine function.  Rather 

than characterizing the growth rate of the mixing zone with 

a shear stress evaluated along a control surface in the zone, 

the equation of Abramovich (Ref. 33) was used to calculate 

the growth rate.  The assumption that the inviscid portions 

of the flow were one—dimensional limited the validity and 

applicability of the theory for supersonic mixing, although 

the predicted mixing zone profiles agreed fairly well with 

experimental profiles.  Another limitation of the theory was 

the use of the Abramovich mixing zone growth rate equation, 

which is strictly applicable only to isobaric mixing. 

The analysis presented in this report may be con- 

sidered an extension and refinement of the theory of Ref. 6. 

* Edelman and Fortune (Ref. 47) recently presented a boundary 
layer type analysis (negligible lateral pressure gradients) 
for ducted coaxial stream mixing.  The viscous layer is com- 
puted by finite difference methods, and finite rate chemistry 
is included in the computations.  Either the duct pressure 
distribution or the duct shape can be prescribed. 
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4.   Ducted Mixing With Nonuniform Inviscid Core 

For certain classes of problems in ejectors and 

propulsion systems, it is essential that the nonuniform 

nature of the inviscid core flow-be considered.  For example, 

a supersonic ejector system having a conical nozzle and 

operating in the "upstream choking" mode (Section I) cannot 

be satisfactorily analyzed if the inviscid core flow is 

assumed to be one—dimensional.  The amount of pluming of the 

supersonic primary stream depends on the detailed flow pro- 

file at the primary nozzle exit. 

Addy (Ref. 34) and Chow and Addy (Ref. 5) have 

analyzed the flow in an axisymmetric ejector system.  The 

secondary flow was assumed to be one—dimensional and the 

primary stream was treated with the method of characteristics. 

The inviscid flow field was first computed, then the effects 

of mixing were obtained by superimposing the two—dimensional 

mixing profiles of Korst and Chow (Ref. 35) on the inviscid 

boundary.  Chow and Addy obtained excellent agreement between 

their analysis and their air—air ejector experiments.  The 

superposition technique gives good results for the air—air 

ejector operating in the upstream choking mode because the 

effect of mixing is relatively small*. 

Chow and Addy clearly point out that their solu- 

tion is valid only for flows with relatively weak viscous 

interaction.  They suggest that their solution can be im- 

proved by successive viscous corrections to the inviscid 

The discussion here is limited to cases in which the secon- 
dary flow is large enough so that the mixing zone does not 
impinge on the duct wall. For zero and low flow rates, the 
mixing zone impinges on the wall and viscous effects are 
very important. Chow and Addy analyzed these low secondary 
flow cases by using a base pressure analysis which included 
effects of base bleed. 
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solution, but that the superposition technique is limited to 

flows with thin mixing layers, i.e., approximately two- 

dimensional mixing.  Another limitation of the superposition 

technique in general is that the mixing profiles are com- 

puted with the assumption that there are no transverse 

pressure gradients, but then are superimposed onto a flow 

which has strong radial pressure gradients. 

To be valid in the downstream portion of the flow 

field, as well as to be self consistent in the upstream 

portion, the inviscid flow field and the mixing layer must 

be computed simultaneously.  The simultaneous solution of 

the inviscid core flow (with the method of characteristics), 

the mixing layer and the secondary inviscid flow is the 

subject of Part II of this report (2—D Core Theory). 

23 



AEDC-TR-68-270 

SECTION ill 
GENERAL DISCUSSION OF METHODS USED IN THE ANALYSIS 

The purpose of this section is to outline the 
principal assumptions and techniques used in this  investiga- 
tion. 

1.   Outline of Principal Assumptions 

As pointed out in Section II, the analysis of free 

turbulent mixing is necessarily approximate, and a 

number of assumptions is required to provide a complete 

mathematical representation of the problem. These as— 

sumptions, as well as others which have been made for 

mathematical convenience, are listed below.  The more 

critical or questionable assumptions are discussed 

briefly. 

(1) The flow is axisymmetric. 

(2) All gases obey the perfect gas law. 

(3) The usual assumptions used in the analysis of 

turbulent boundary layers are assumed to be appli- 

cable.  The most important of these assumptions is 

that the radial pressure gradients in the mixing 

layer are negligible.  The neglect of radial pres- 

sure gradients has yielded good results for low 

sp^ed fr^e fixing problems (Ref. 8), but may not 

be valid when the mixing layer is wholly or partly 

supersonic.  Nevertheless, this assumption has been 

widely applied in the analysis of high speed mixing 

layers.  It is not intended that the neglect of 

radial pressure gradients be justified, but rather 

that the assumption be clearly noted. 

(4) The inviscid portion of the secondary flow is 

assumed to  be one—dimensional and isentropic.  This 

assumption is quite valid when the secondary flow 
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is subsonic and the radii of curvature of the 

streamlines are large with respect to the radius 

of the flow passage.  This mixing theory is also 

applied to cases in which the secondary flow 

accelerates into the low supersonic range (Ha < 1.3). 

The one—dimensional assumption will be less valid 

for these supersonic cases, but this is not con- 

sidered a serious defect in the analysis compared 

to some of the more questionable assumptions. 

(5) The inviscid portion of the primary flow (inviscid 

core) is assumed to be one—dimensional and isen— 

tropic for the 1—D Core Theory (Part I).  Again, 

this assumption will be quite valid for subsonic 

primary flows.  For supersonic primary flows, this 

assumption will be approximately correct only if 

the primary flow is initially uniform and the whole 

process is nearly isobaric. 

(6) The inviscid core flow is assumed to be isen— 

tropic for the 2-D Core Theory (Part II).  This 

region of the flow is treated with the irrota— 

tional method of characteristics.  For primary 

nozzles which provide uniform or conical flow, it 

is well known that the shock waves in the free jet 

are weak in the near field, but become more signi- 

ficant in the far field (several primary nozzle 

radii downstream).  Some of the mixing configurations 

considered in this investigation are relatively long, 

and it is to be expected that neglecting the shock 

waves in the flow will cause some deviation from 

experiment. 

(7) The mixing layer is assumed to be completely tur- 

bulent, and the boundary layer thicknesses at the 
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initiation of the free mixing layer are assumed 

to be negligible.  The first of these assumptions 

implies that transition from laminar to turbulent 

flow occurs well upstream of the initial section 

of the mixing duct.  The assumption that the 

initial boundary layers are thin is reasonably 

valid in this analysis because the major interest 

is in the region many initial boundary layer 

thicknesses downstream from the mixing duct entrance. 

(8) The finite thickness of the nozzle lip separating 

the primary and secondary flows is assumed to be 

negligible. 

(9) The viscous effects at the duct wall are assumed 

to be negligible.  In one correlation of the flow 

in a low speed jet pump (Section IX) the duct is 

approximately 10 diameters long and the wall 

boundary layer effects are significant.  In that 

one case the wall viscous effects were computed 

by use of an approximate displacement thickness 

correction to the duct contour. 

(10) The shape of the normalized velocity profiles in 

the mixing layer is assumed to be similar at all 

axial locations, and to be represented by a cosine 

function. 

(11) The turbulent Prandtl and Lewis numbers in the 

mixing layer are assumed to be unity. 

(12) For mixing with simultaneous chemical i'eactions, 

the reactions are assumed to be in equilibrium.  The 

current knowledge of reaction chemistry in turbulent 

flows is insufficient to allow a theoretical verifi- 

cation of this assumption; its validity can only be 

checked by comparison of the theory with experiment. 
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(13) The eddy viscosity at the half-velocity point in 

the mixing layer is assumed to be given by the 

Prandtl eddy viscosity equation, with the effect 

of variable density treated by a modification of 

the correction suggested by Donaldson and Gray. 

This eddy viscosity model is discussed further in 

Section VI. 

(14) In the third regime, where the turbulent region 

extends across the entire duct (Fig. 1), the free 

mixing concepts of shear and profile shape simi- 

larity are assumed to be applicable.  Mikhail 

(Ref. 31) found that the cosine profile was a 

reasonably good representation of the third re- 

gime velocity profiles in his low speed jet pump 

configuration.  It is realized that the third 

regime flow will eventually become a fully de- 

veloped duct flow in which wall effects pre- 

dominate.  However,   this analysis is not intended 
for application to more than 1 or 2 duct diameters 

downstream into the third regime.  The validity 

of free turbulent shear relations in the upstream 

portion of the third regime can only be established 

by comparison of theory and experiment. 

These assumptions, along with others that are mentioned 

in the text, sufficiently define the ducted mixing pro- 

blem so that flow field solutions can be obtained by 

application of the integral method. 

2.   Outline of Analytical Developments - 1-D Core Theory 

Section IV presents the derivation of three basic 

integral equations for the ducted mixing problem. 

These integral equations, which are derived from the 
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continuity equation and the axial boundary layer momentum 

equation, are: 

(1) A continuity equation for the entire flow. 

(2) A momentum equation for the entire flow. 

(3) A momentum equation for the portion of the flow be- 

tween the duct centerline and a control surface 

located halfway across the mixing layer. 

A term representing the turbulent shear stress appears 

in the last equation. 

Section V presents the equations for the mixing zone 

velocity, and for relating the mixing zone temperature 

and density to the velocity.  The method of treating the 

mixing zone chemistry is presented. 

Section VI presents the model used for the turbulent 

eddy viscosity. A modification of the density correction 

suggested by Donaldson and Gray is developed.  The range 

of applicability of the eddy viscosity model is discussed. 

Section VII presents the method of transforming the set 

of three basic differential—integral equations (derived 

in Section IV) into a set of three first order ordinary 

differential equations for three variables which fully 

define the flow. All of the auxiliary functions which 

are needed tc ecaapute the coefficients of these dif- 

ferential equations are presented in Appendix I.  The 

resulting system of equations is solved by standard 

numerical techniques. 

Section VIII presents a brief discussion of the numerical 

aspects of the solution, from the point of view of the 
engineering results. 
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Outline of Analytical Developments - 2-D Core Theory 

Section X presents the derivation of three basic integral 

equations.  These equations differ from the 1—D Core 

Theory equations in that the integrals do not include 

the inviscid core; the influence of the inviscid core 

appears in terms of the boundary conditions for the 

integral equations. 

Section XI presents the equations used to represent the 

flow in the mixing layer.  With a few exceptions, the 

mixing zone parameters are determined in the same way 

as in the 1—D Core Theory. 

Section XII presents the transformation of the three 

basic differential—integral equations (derived in Section 

X) into a set of ordinary differential equations suitable 

for numerical solution by conventional techniques.  All 

of the auxiliary functions required to compute the 

coefficients are presented in Appendix II. 

Section XIII presents the method of characteristics 

solution for the inviscid core flow.  The key technique 

for coupling the method of characteristics solution to 

the system of integral equations is discussed. 

Section XIV presents a brief discussion of the numerical 

aspects of the 2—D Core Theory solutions. 

Section XV presents the methods used to obtain solutions 

for ducted mixing systems operating in (1) the "down- 

stream choking" mode, (2) the "back pressure dependent" 

mode, and (3) the "upstream choking" mode.  In all cases, 

the solutions are obtained by iteration of the initial 

static pressure. 

Appendix III presents a listing of computer program in- 

puts and printout variables for both the 1—D Core Theory 

and 2—D Core Theory programs. 

29 



AEDC-TR-68-270 

PART I 

DUCTED MIXING WITH ONE-DIMENSIONAL INVISCID CORE FLOW 
(1-DCORE THEORY) 

SECTION IV 
DEVELOPMENT OF BASIC DIFFERENTIAL - INTEGRAL EQUATIONS 

In this  section a set  of  three basic differential— 
integral equations     is derived  from the boundary layer equa- 
tions.     The  three equations  are   (1)   a continuity equation for 
the entire flow,   (2)   a momentum equation for  the entire  flow, 
and  (3)   a momentum equation for the portion of  the  flow between 
the duct centerline and an arbitrary control  surface. 

1.   Integration of Boundary Layer Equations 

The axial momentum equation for axisyrametric flow is: 

The continuity equation is: 

1^. Ottr) 4- J^pirr) = o C» 
The pressure is a function of only the axial coordinate, 

and is equal to the wall pressure, p .  After multiplying w 
each term by dr, eq. (1) is integrated between the ar- 

bitrarily selected lower and upper limits, r.. and r„: 

£UL 

r, r; r*% (3) 

The term "differential—integral equations" is used to 
denote the integral form of the boundary layer differential 
equations.  These equations contain terms of the type  /***■ 
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Now consider the second term of eq. (3).  Integrating by 

parts: ^ ^ 

frt-r |£ ^ = [f tro.rj   - U. |-(f irr) Ar 
<4> 

Noting that £/&f fr *r%rJÄ "" ^£;c(ftor) from eq. (2> J eq. (4) 
is substituted into eq. (3): ._ 

Combining terms: 

Now let r. = 0 and r9 = r , and note that T  =0: 

r. 

(6) 
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Integrating the continuity equation (eq. 2) 

o 
Thus ^- 

f^/. = - Ji*(f "^ dx" m 
O 

Substituting eq. (7) into eq. (6) 

/&r^*-«wj£(Wyr*r« -^ ^ 

To provide a second momentum equation, eq. (5) is 

evaluated with r^ = 0 and r„ = r , the arbitrary position 

in the mixing zone where u = u 

Equations (7), (8), and (9) are the three basic 

integral equations, i.«-., a continuity equation for the 

entire, flow, a momentum equation for the entire flow and 

a momentum equation for thp interior portion of the flow 

between r = 0 and r = r . m 

Applying Leibnitz' rule for differentiating an 
integral (Ref. 36) to eq. (7): 

o 

Because the wall is a streamline in the flow field, 

W   s U*»i Afvj/j y   >   and the continuity equation becomes: 

(8) 

mr„ - äa. &     (9) 
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^|"f«.rd>r    =o <l°> 
G 

Similarly, applying Leibnitz' rule to eq. (8) gives: 

A. 
o 

or 

Applying Leibnitz' rule to eq, (9) gives 

O o 
x 

or ^ 

Equations (10), (11) and (12) are the working forms of the 

three basic integral equations. 
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2.   First Regime Differential-Integral Equations 

Referring to the schematic shown in Fig. 3, the 

mixing layer in the first regime is bounded on either side 

by a region of one—dimensional isentropic flow.  The radius 

of the mixing zone control surface, r , is taken to be half 

the radial distance across the mixing zone, i.e., r = 

r. + b/2.  The integrals appearing in eqs. (10), (11) and 

(12) can be divided into parts corresponding to the various 

regions of the flow.  Thus the following equations are 

obtained. 

Continuity Equation 

(13) 

Total Momentum Equation 

ih¥]^ih^^ ^^\ 

Half—Radius Momentum Equation 

kY^4Y&fc^-u"i*\^i. 

1 dfc   2. 

(14) 

(15) 
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3.   Second Regime Differential-Integral Equations 

In the second regime (Fig. 3) the mixing zone 

extends to the centerline (r. =0), but a region of one- 

dimensional isentropic flow exists outside the mixing 

layer.  In this regime, r = b/2, and the following equa- 

tions are obtained. 

Continuity Equation 

?a.U-flu 
n.*- x - o 

Total Momentum Equation 

i|raN-AT + i jf 

Half—Radius Momentum Equation 

O ö 

4.   Third Regime Differential-Integral Equations 

In the third regime (Fig. 3) the mixing zone 

extends across the entire duct, thus r. =0. b = r  and 
i       i    '     w 

r = r ,_. The integral terms in eqs. (10), (11) and (12) 

only include the mixing layer, and the following equations 

are obtained. 

Continuity Equation 

*Vi 

(16) 

(17) 

(18) 

(19) 
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Total Momentum Equation 

± 1 
o 

Half-Radius Momentum Equation 

, y ̂ k ,*A. 

J* ?{jLZr-^T- 

0 

dPw 
2. 

(20) 

(21) 
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SECTION V 
MIXING ZONE PROFILES 

A set of three basic differential—integral equa- 

tions was developed in Section IV for each of the three 

mixing regimes.  Solution of these differential—integral 

equations requires that p and u in the mixing layer be de- 

fined in terms of the other variables of the problem.  The 

following development of the relations for the density and 

velocity distributions is essentially the same as that of 

Peters, et al. (Ref. 6). 

1.   Relation Between Velocity, Composition and Enthalpy 

The axisymmetric boundary layer equations for 

momentum, energy and conservation of elemental species, with 

unity turbulent Prandtl and Lewis numbers, are (Ref. 22): 

Momentum Equation 

Energy Equation 

Conservation of Elemental Species 

These equations are the? steady laminar boundary layer 

equations with the laminar transport properties replaced by 

the corresponding effective turbulent values.  For free 

turbulent mixing, the turbulent transport is normally an 

order of magnitude or more larger than the molecular 
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transport; therefore, the molecular transport coefficients 

are neglected. 

For application to flows with chemical reaction, 

it is important to note that C, is defined as the local 

mass fraction of the element k, and HQ is defined as the 

stagnation enthalpy, including chemical heats of formation. 

As Libby has shown (Ref. 22), these definitions for Ck and 

H remove the usual formation terms from the energy and o 
species equations.  For chemically frozen flow, C. can be 

interpreted as the local mass fraction of the molecular 

species k, and HL can be defined with the usual definition 

of enthalpy, i.e., fc*±T 

o 
Now consider the case of isobaric mixing of an 

initially uniform jet with a surrounding uniform infinite 

stream.  The dp/dx term in eq. (22) is zero, and eqs. (22), 

(23) and (24) are identical in form.  The initial and 

boundary conditions for all variables are similar, and 

the following linear relation is obtained between u, H 

and C.: 

iJL-LL*,   a Mo - ^**>_    _ Cfe - Ck<o 

»j-tU   H.}-H0*       Cly-Cfc«, 
The subscript "a" refers to the outer stream and "j" to 

the inviscid jet.  H and C. are related to u by eq. (25) 

for isobaric mixing, and if these variables also define 

the density, p, then the solution of the momentum equation 

completely defines the flow field. 

Equation (25) is also assumed to be valid for 

mixing with axial pressure gradients.  Note, however, that 

the inviscid reference velocities, u and u., are pressure a     j 
dependent.  The assumption that eq. (25) is valid for flows 

with axial pressure gradients is made conditionally.  If 

(25) 
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eq. (25) is valid, then the computed total flux of any 

elemental species should be the same at all axial stations in 

the flow field.  In the ducted mixing case, this species 

conservation may be expressed as 

pu,C|l
,rcix~  = c ö r\ s "da-vi "t 

O 

If the integral of eq. (26) does remain approximately 

constant throughout a flow field computation, then the 

use of eq. (25) is justified, at least for an integral 

method.  In other words, the solution of the integrated 

momentum equation is also a satisfactory solution of the 

integrated species and energy equations. 

Because the transport coefficients for all 

species are the same, the composition at any point in the 

mixing zone may be considered a simple two component mix- 

ture.  This composition may be characterized by the single 

parameter C, which is defined as the mass fraction of 

elements originating in the central stream (thus Ü. =1, 

C = 0).  Equation (25) becomes 
El 

U> - tig*   _ Ho - HotU    __ "p 

"J -">**""   Hcj - Hoo. " 
Considering eq. (26), a species conservation 

parameter, Q, is now defined in terms of U, 

where w. is the initial mass flow of the jet.  If eq. (25a) 

is correct, then the computed value of Q will be equal to 

unity throughout the flow field. 

The theoretical variation of Q for a ducted rocket- 

air mixing system is discussed in Section XVII. 

(26) 

(25a) 

(27) 
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2.  Mixing Zone Velocity Profiles 

It is assumed that the mixing zone velocity pro- 

files are similar and can be represented by a cosine function: 

Uto*x~U''tnL n * % [i *.... TC^S)J <»> 

(28a) 

In the first regime (Fig. 3) the velocity profile equation 

is 

It has been assumed that the radial pressure gradients in 

the mixing zone are negligible, and that the inviscid 

secondary and primary flows are one-dimensional.  It follows 

then that the pressure across the entire duct at any axial 

station is p , with p being a function only of x.  The 

inviscid stream velocities, u, and u , are isentropic 

functions of only p , therefore eq. (28a) defines u in terms 

of p' , r., and b. 
W     X 

In the  second regime  the  velocity profile equation 
is 

flZ U^-    &    VZ \{ + COS   TT^)] (28b) 

where u is the centerline velocity (Fig. 3).  In the third c 
regime the velocity profile equation is 

f'^tt =  /£ fi + «5 TTC'OI <28C) 

where u is the velocity at the duct wall. 
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Note that the composition profiles are determined 

from these velocity profile equations (eqs. 28a~c) and eq. 

(25a). 

Velocity along the half-radius control surface — 

The cosine velocity profile gives the result that the velocity 

at the half—radius point in the profile is the average of 

the inviscid stream velocities.  In the first regime the 

velocity, u, is given by 

^m-   Vz (*:+U*) (29a) 

In the second regime 

In the third regime 

(29b) 

m     =.      'fc^C-r—vvy (29c) 

3.  Mixing Zone Density 

The mixing zone density is given by the perfect 

gas law, 

P- P/RT <30) 
where T is the static temperature and R is the gas constant, 

defined as the universal gas constant divided by the molecular 

weight of the gas. 

The method cf determining the mixing zone tempera- 

tures and gas constants is discussed in the next two sections 

for the cases of equilibrium and frozen chemistry, respec- 

tively. 

4,   Equilibrium Mixing Zone Chemistry 

For rocket—air mixing, the mixing zone chemistry is 

assumed to be in equilibrium, i.e., the chemical reaction 
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rates are assumed to be very fast with respect to a charac- 

teristic time for the flow.  The temperatures and gas 

properties in the mixing zone must be computed by application 

of the concepts of equilibrium chemistry.  If the mixing were 

isobaric, then the mixing zone temperatures and gas proper- 

ties would be unique functions of Ü for any given problem. 

In the case of ducted mixing, the pressure will not be con- 

stant in any given problem, and in principle, the mixing 

zone temperatures and compositions will continuously shift 

to the equilibrium condition at the local pressure.  To 

treat this chemistry problem rigorously, one would need to 

incorporate an equilibrium chemistry computation into the 

flow field solution. Rather than resort to this complica- 

tion, the mixing zone chemistry is treated by an approximate 

but acceptably accurate technique. 

The equilibrium mixing zone temperatures and com- 

positions are determined, as a function of U, with an 

exterior calculation for representative values of p , u. 
™     J 

and u *. A hypothetical mixing zone total temperature is 

then defined, and it is assumed that this total temperature, 

as well as the corresponding gas properties, is invariant 

throughout the flow field.  This technique implies that the 

gases are in chemical equilibrium at the representative 

values of p , u. and u , but that the flow is effectively 

frozen for deviations from the selected representative 

condition.  The validity of this technique has been checked 

for the conditions of the rocket-air mixing experiments of 

Refs. 6 and 7, and the error in the mixing zone density 

profile was found to be negligible. 

Once the jet and secondary flow stagnation con- 

ditions are specified, the choice of a representative 

value for p completely defines the static enthalpy, H, 

* The assumption of an equilibrium primary stream expansion 
process is used to relate u, to p . 
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from eq. (25a) and the energy equation: 

hf  = H0 - U%. (3l) 

H, Ü and p completely define the chemical problem if the 

elemental compositions of the inviscid streams are known. 

The temperature and molecular composition can then be 

computed with a standard equilibrium chemistry computer 

program.  For hydrogen—oxygen—nitrogen or hydrocarbon- 

oxygen—nitrogen systems, the technique presented in the 

Appendix of Ref. 6 may also be used to compute the 

equilibrium temperatures and composition.  A calculation 

procedure was presented in Ref. 6 with which the tabulated 

equilibrium properties for hydrogen—air and hydrocarbon—air 

systems (Refs. 37 and 38) can be used to compute the 

equilibrium properties for systems in which the nitrogen- 

oxygen mole ratio differs from 3.76 (mole ratio for standard 

air).  That technique of Ref. 6 was used in this investiga- 

tion. 

The equilibrium chemistry computations yield 

the static temperature, the molecular composition and the 

molecular weight as a function of Ü.  The local gas constant, 

R, is determined from the molecular weight, and the mixture 

specific heat is given by the relation 

Cp=2.™*Cpfe (32) 

where m. is the mass fraction of molecular species k and 

c . is the specific heat of species k at the static tempera- 

ture.  The specific heats, c . , are tabulated in standard 

gas tables (Ref. 39, for example).  The local velocity, u, 

is determined by U (from eq. 25a and the representative 

values of uft and u.), and the hypothetical mixing zone total 

temperature is defined by use of the energy equation: 

71 = ~r+- UV* ZGp (33) 
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A typical set of curves relating T , c and R to 

Ü is shown in Fig. 4 for the experimental conditions of 

Refs. 6 and 7.  The corresponding frozen distributions of 

T , c  and R are also shown in Fig. 4. o'  p 

5.   Frozen Mixing Zone Chemistry 

For frozen mixing, two methods of determining the 

T , c and R distributions are presented.  The first method o'  p 
is used when the specific heats of the constituent gases 

may be assumed to be constant and independent of temperature. 

The second method is used when the specific heats of the 

gases are considered to vary with temperature.  When the 

temperatures of the inviscid streams are greatly different 

the second method should be used, but the first is adequate 

for mixing of streams having relatively low temperatures, 

such as mixing in the usual air—air ejector. 

Constant specific heats - The mixing zone total 

enthalpy, H , is determined from eq. (25a) as a function of 

Ü, where H  = c  T  and H . = c . T ..  The local specific ' oa pa    oa oj pj     oj * 
heat   is  given by 

cP=  Ccpj + (l-CJC pou (34) 

The local gas constant is given by 

R - CRj -*-0-C)R,C <35> 

The  local mixing zone  stagnation temperature  is  given by 

T^    =■    Hff/cp (36) 

Variable specific heats — The local mixing zone 

molecular composition is determined as a function of Ü 

from the relation 

m ft - ^ "V, + 0 -C) ynh<L (37) 
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where mk is the mass fraction of molecular species k.  The 

local gas constant, R, is given by eq. (35), but an iterative 

process must be used to determine TÄ and c .  The stagnation op 
enthalpy, H , is given by eq. (25a), and the static enthalpy, 

is computed from eq. (31), along with a representative u vs. 

Ü function (same procedure as for equilibrium chemistry). 

The local static temperature is determined by trial of 

various values of T until the following equation is satisfied: 

H=£^H^ (38) 

The values of H, are obtained from standard tabulated gas 

tables (Ref. 39, for example). After T is determined the 

mixture specific heat is obtained from eq. (32), with the 

e  *s taken from the gas tables at T. The hypothetical pK 
total temperature is then determined from eq. (33). 

The resulting T , c and R functions of Ü are 

assumed to be invariant in the flow field computation. This 

procedure, which is basically the same as used for equilibrium 

chemistry, assumes that the variation of the specific heats 

is negligible for the range of temperatures that a given 

mixture undergoes in the flow field.  This procedure is 

exact for isobaric mixing, as is true for equilibrium 

chemistry. 

The frozen distributions shown in Fig. 4 were 

computed by taking into account the variation of the 

specific heats with temperature. 
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SECTION VI 
TURBULENT EDDY VISCOSITY 

As is usual with the integral method, the turbulent 

shear is evaluated at only one position in the mixing zone, 

in this case at the half radius control surface, r  (Fig. 3). m   w 

This turbulent shear stress, T , is determined by the m 
equation 

dv |YV\ 

where s  is the eddy viscosity. m 

Eddy viscosity model — The semi—empirical model for 

the eddy viscosity which is used in this investigation is 

the Prandtl incompressible model 

6 y^ = k b (W.y«a-x " a™'*) <40> 

with the empirical constant, k, corrected for the influence 

of variable density in the mixing layer.  The variable 

density correction used is a modification of the correction 

suggested by Donaldson and Gray (Ref. 28) for the mixing 

of an axisymmetric jet flowing into a quiescent medium. 

Their analytical model was an integral method similar to 

the model reported herein, and the turbulent shear stress 

was evaluated along a control surface, r  (x), where the 

velocity was u  = 4 u m     max 

Donaldson and Gray evaluated the value of k (using 

the Prandtl eddy viscosity model) at various axial stations 

in the flow field for several different experiments.  They 

found that the influence of density gradients in the mixing 

layer could be generalized if k is taken to be a function of 

only the local Mach number, H , at the control surface, r . m m 
For. their cases of interest, with zero secondary velocity, 
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they found an influence of the nozzle lip geometry on the 

computed values of k.  For flows which issue from a nozzle 

in a large plate (causing the induced secondary flow to be 

initially radial) the computed values of k were, in general, 

somewhat larger than for nozzle geometries in which the 

induced secondary flow was nearly axial. When plotted 

against M , the values of k for both configurations tend 

to decrease quite quickly with increasing M , then to 

become nearly constant for larger values of M . 

The two curves which Donaldson and Gray faired 

through the data (for sharp and blunt nozzle lips) can be 

approximated quite well by an exponential function of M , 

with the "half-decay" of k occurring at M £ 0.45.  If k m o 
is the value at M •= 0, and k the asymptotic value at m oo      * r 

large M , this exponential function can be written as 

JLL!** = exp QsA2 Mm) (41) 

Donaldson and Gray evaluated k in both the core 

region of the jet (first regime) and the developed region 

(second regime).  The absolute values which they computed 

for k in the core region appear to be in error.  Experience 

in correlating a similar integral method with low speed 

experiments has shown that the core region (first regime) 

values of k are smaller than the developed region values by 

a factor of 1.5 — 1.6.  Donaldson and Gray, on the other hand, 

found the same values of k in both regions of the flow. 

Their developed region values of k appear to be approxi- 

mately correct, so their core region values are too high 
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by a factor of 1.5 - 1.6 .  The reason for this discrepancy 

is not clear, although it may be related to the momentum 

correction which Donaldson and Gray used to account for 

initial boundary layers in the jet. 

The procedure which has been used in this investi- 

gation is to assume that eq. (41) correctly expresses the 

effect of density gradients, but to evaluate k and k by 

correlating the present integral theory with experimental 

results. The 1-D Core Theory was correlated with various 

low speed experiments (Section IX) and the values of k in 

the first and second regimes were found to be approximately 

0.007 and 0.011, respectively. 

The 2—D Core Theory (Part II) was correlated with 

several experiments for rocket—air mixing (Refs. 6 and 7) 

in which M varied from approximately 1.5 to 1.8.  These 

values of M are higher than any reported by Donaldson and 

Gray, so the results for k are taken to be k .  It was found 

that the rocket—air mixing could be satisfactorily correlated 

if k /k was taken to be 0.66.  Substituting this value into 
oo  O 

eq. (41), one obtains 

This equation is shown in Fig. 5, along with the results 

from Warren's experiments, the only experiments with sharp 

lip nozzles which Donaldson and Gray considered. 

(42) 

Because of different definitions for the characteristic 
length and velocity scales in the Prandtl eddy viscosity model, 
Donaldson and Gray's values of k are about 4 times larger than 
the corresponding values used in this investigation. 
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All of the computations presented in this report 

were made using eq. (42), along with k - = 0.007 (first 

regime) and k T_  ___ « 0.011 (second and third regimes). 

As was pointed out in Section II, the Prandtl eddy 

viscosity model (eq. 40) is questionable for two stream mixing 

when u /u. is greater than 0.3.  The greatest interest in this 
a j 

investigation has been in correlating the rocket-air mixing 

experiments of Refs. 6 and 7.  In those experiments, the 

value of u /u. did not exceed 0.1.  The 2-D Core Theory is 
a  J 

also correlated with supersonic air-air ejector experiments 

in Part II, and u /u. exceeded 0.5 in some of those experi- '      a  j 
ments.  It is to be expected that the predicted mixing zone 

growth rate will be too small for these air-air ejectors, 

however, the influence of mixing on the performance of 

supersonic air-air ejectors is known to be small (in the 

upstream choking mode of operation).  Consequently, the 

use of the Prandtl eddy viscosity model should not cause 

serious errors in the overall results. 

Turbulent shear stress — Differentiating the 

velocity profile equations from Section V, the velocity 

gradient at r  is found to be: m 

First regime 

au,|   _ X Q±±-ui) 

Second regime 

Third regime 

ar m 

Substituting eqs. (40) and (43) into eq. (39), one obtains 

the following equations for the shear stress at r m 

(43a) 

(43b) 

(43c) 
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First regime 

r™ = x ^x ^ &*- ai) C^-u-j)] (44a> 
Second regime 

fw * j feÄ fm(u<wiX2)\(LL*.-tl^\ (44b) 

Third regime 

r^ - y ^JK P^C^-u.t
x)(Cw.vü-^cs) 
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SECTION VII 
TRANSFORMATION OF DIFFERENTIAL-INTEGRAL EQUATIONS 

A system of three basic differential—integral equa- 

tions was derived in Section IV for each of the three mixing 

regimes.  In this section, the system of differential- 

integral equations will be transformed into a form suitable 

for solution with conventional numerical techniques.  The 

transformation technique used is essentially the same as that 

suggested by Phares and Loper (Ref. 40). 

1.   First Regime Transformation 

The three first regime differential—integral 

equations which were derived in Section IV are as follows: 

Continuity Equation    ■ 

^/iri]^^ikr4^H(i3> 

Total Momentum Equation 

(14) 
Half—Radius Momentum Equation 

axLj J ?- J  d)cjr dx-L^ ^J "srJ      as) 

Sufficient information about the terms in eqs. (13) 

through (15) was developed in Sections V and VI so that the 
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mixing problem can be defined in terms of three flow field 

variables which are functions of only the axial coordinate, 

x.  The variables chosen in the first regime are (1) the wall 

pressure, p , (2) the radius of the inner boundary of the 

mixing zone, r., and (3) the width of the mixing zone, b. 

The objective here is to transform eqs. (13) through (15) 

into three equations of the form 

which may easily be solved by standard numerical procedures. 

First apply Leibnitz' rule to eqs. (13) through (15): 

The continuity equation becomes 

The total momentum equation becomes 

1 L 

(47) 
The half-radius momentum equation becomes        i * 

n 
+ ft«. - u./) Pj itj rc 

dlL = ft, fc+ b/\ _ ^f« fc * *»£)    (48) 
dX v        '*' dX- 
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The first regime mixing zone profiles are ex— 
r—r i 

pressed in terms of the variable y = (—-—) (Section V); 

therefore, change the variable of integration in the integral 

terms from r to y, using the relations 

(49) 

and 

(50) 

Equations (46) - (48) become: 

r**-6r^fc)2l _ 
J       (46a) 

4- «O^r^CS'+fi) +&[*.«/ ^#^j 

- - dP* VwZ 

,.       dX    A 
(47a) 

ja 

ax  —j— (48a) 

57 



AEDC-TR-68-270 

The inviscid stream parameters (p., u., p , u ) 
J   J   **   •* 

are isentropic functions of only p , and the non-integral 

terms of eqs. (46a) - (48a) can be expressed directly in 

terms of the flow field variables (x, p , r., b). 

The integrands of the integral terms of eqs. (46a) - 
2 (48a) are d/dx (pu) and d/äx (pu ), and these integrands must 

now be expressed in terms of the variables (x, p , r., b). 

The parameters p and u are actually functions of (x, r), 

however, assume for the moment that p and u are functions 

of the independent variables (x, r, p , r., b).  Then one 
W     J. 

can write 

and 

u.(*,0 =aC»i^R«>^*b) 

where p ■ "p and u = u, the only difference being the vari- 
ables which are considered independent.  Application of the 

chain rule for differentiation of composite functions gives 

ax  " ^ «^Pw 3Z    **i S7c      ^b die (51) 

and 

(52) 

Applying eqs.   (51)   and  (52)   to  the   integrands ö/öx   (pu)   and 
2 

d/dx   (pu ),   one obtains .« 
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+dÄ o~ "ft^&V S(*~ft«> ft) 
+ ÄC»* «+■**£) (54> 

Substituting eqs. (53) and (54) into eqs. (46a) 

through (48a), one obtains after expansion of the non-integral 

terms and considerable rearrangement: 

Continuity equation: 

F' d* * * d7 + F*   ZZ        F+ <55> 
Total momentum equation 

Half—radius momentum equation 

The coefficients of eqs. (55) - (57) are given by the 

following equations: * 

a tu. 

(55a) 
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o o 

r' - r' 

o 

1 

F4--^§+4xVrbr'f^rx+4Vi 
- ■Pa.u-«ovrw -r— (55d) 

6,=^i^fo»'»* te&fcg+^ifcy* 
o G' 

+ ^ [r^fr*^ ft+^^wtfcrt^ 4 pw       (56a) 

(56b) 

(56c) 

° I - ° / -    l 

° (56d) 
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H, = +£*»-%+*& V* + »rtfaifju? $><* 4? 

df 
P*+U-IP*V$ 

k 

o 

fc fc 

^tf(^^|)^r^fe|fa^)^ 

tmCri+b/z) (57d) 
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All of the auxiliary equations required to evaluate 

the coefficients P, G and H are presented in Appendix I. 

Equations (55) - (57) are linear in the derivatives 

dp /dx, dr./dx and db/dx, therefore these equations can be 

solved for the derivatives by application of Cramer's rule, 

as long as the determinant of the coefficients is not zero: 

dp*   _     IP] 
djL \D\ 

4lL =. 
ax 

ist 
IDI 

ab ,   |Bl ab _ 
ax 

(58) 

(59) 

(60) 

Where the determinants are: 

P, 
D = 

i 

H, 

Fa. F3 
(coefficient determinant) 

|P) = 
. Fa 

H4 Wj. W3 Ißl- 

F, Fa F+ 

Si Gi S4. 

M, Mt "+ 

Equations (58) - (60) can be numerically integrated with 

standard techniques for prescribed initial conditions. 

The numerical technique used in this investigation was 

the well known Runge-Kutta method (Ref. 41). 
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2.   Second Regime Transformation 

The three second regime equations which were de- 

rived in Section IV are as follows: 

Continuity equation 

^ far dr + *. [ft, **%£&.*] = O (16) 
o 

Total momentum equation 

o 
Half—radius momentum equation 

ow 

o ° 
In the second regime r.= 0, and the three fl 

field variables are chosen to be p , the centerline velocity 

u , and b.  The mixing zone coordinate in the second regime 
c    r 

is y = ▼-, therefore 

and 

O' 
Equations (16) — (18) are transformed in the same way as 

the first regime equations, with the exceptions that the 

variable u is substituted for r., and eqs. (61) and (62) 

are used in place of eqs. (49) and (50).  One obtains the 

following system of equations for the derivatives dp /dx, 

du /dx, db/dx: c 

(18) 

(61) 

(62) 
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Continuity equation 

Fi^L+F,^+5^.= F+ (M) 
dX      dx    «3 G(X     ^ 

Total momentum equation 

dX*      dx    3 dx 
Half—radius momentum equation 

The coefficients of eqs. (63) — (65) are given by the 

following equations: 
1 

4* 

o 
/ 

Pi^'JCtfi^ffiV* o 

F+ -**&«+»■* V*-*-«**- *-gs 
o 

(64) 

(65) 

(63a) 

(63b) 

(63c) 

(63d) 

(64 a) 
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■■fa^&S^sO*** Gl = F) CWK.1- U.' si^. )^d* (64b) 
O 

G3 ° o 

^»-4*jC««.^+u.*gHi 
* 

(64c) 

— rfc,«**, *w    ^^ (64d) 

(65 a) 

«i 

6 
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All of the auxiliary equations required to evaluate the 

coefficients F, G and H are presented in Appendix I. 

Equations (63) - (65) can be solved for the 

derivatives of dp^dx, du /dx and db/dx in the same way 

as in the first regime, except that eq. (59) is replaced by 

d# 1D| (66) 

where 

UJ- 
F,   F4 F3 

Hj   HA- H3 

3.   Third Regime Transformation 

The three third regime integral equations which 

were derived in Section IV are as follows: 

Continuity equation 

(19) 

Total momentum equation 

0 
Half—radius momentum equation 

(20) 

dX. 8 
(21) 

In the third regime b = r , and the three flow 

variables are chosen to be (p , u and u ).  The mixing w  c     w 
zone coordinate is y = —, therefore rw 
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(67) )  C ^clr = Vs/-)  C H^ 

and •<Vz ^ 
C ^dx-^r/)( ^^ (68) 

Equations (19) — (21) are transformed in the same way as the 

first regime equations, with the exceptions that the variables 

r. and b are replaced by the centerline velocity, u , and the i c 
wall velocity, u ; eqs. (67) and (68) are used instead of 

eqs. (49) and (50).  One obtains the following system of 

equations for the derivatives dp /dx, du /dx and du /dx: 

Continuity equation 

F'   a* +r* TZ +r3 air - F* (69) 

Total momentum equation 

^» dTC    *• dTt      d;t 
(70) 

Half—radius momentum equation 

H,äpL+y,.jf-h^dJ^L = H^ (7i) 
d-JC      a^      dTS 

The coefficients of eqs. (69) - (71) are given by the 

following equations: 
I 

F,^C* %+*&)*<%■ (69a) 

f> = ^fc 3Ec+u- SO *H (69» 
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J 

Fa=    ^ ffr^+*1LV* 

F4—r«*Jcf&+«.fe^Vf,,(lw<v,S (69d) 

6, = <r„* C*f» rp-+a" SfW^«^ + £ <™a) 

<£■* = T* 
z. fc^sS^tlcW (70b) 

.^» fc* «•&,+«■"■ iE-^H 
o 

,-r/^l^^tH 
O 

<70d) 

-«■*mfrfc&+«ftVt+$ 
r^    - 

-2. 

(71a) 
O 

- um rj^ )(r |a + u. 3^N) H 4^ (7ib) 
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^ 

(71c) 

+*», *w*J C? ^ + *. |£ ) ^ +- tr„ rw/2   (71d) 

All of the auxiliary functions required to evaluate the 

coefficients F, G and H are presented in Appendix I. 

Equations (69) - (71) can be solved for the 

derivatives dp /dx, du /dx and du /dx in the same way as in 

the first regime, except that eq. (59) is replaced by eq. 

(66), and eq. (60) is replaced by 

eJU-W   _      |(JW| 

where 

U w 

D 

Fi Fi  F^ 

(72) 
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SECTION VIII 
NUMERICAL CONSIDERATIONS 

The system of linear differential equations de- 

veloped in Section VII, with the coefficients evaluated using 

the equations of Appendix I, was solved by conventional 

numerical procedures.  The computer program is quite lengthy 

and the details will not be given here.  The purpose of this 

section is to give a brief discussion of the numerical solu- 

tion from the point of view of the engineering results. 

Numerical precision - The integral terms appearing 

in the coefficients F, G and H (Section VII) are evaluated 

by means of a sixteen point Gaussian quadrature formula.  No 

improvement in the solutions was found when the integrations 

were made with a 32 point quadrature formula. 

The axial step size, Ax, for the Runge—Kutta 

integrations of the set of differential equations is an 

input to the program.  The solutions have been found insen- 

sitive to Ax, and the step size is chosen primarily for 

convenience in defining the solution.  Typically, Ax is 

chosen to be 0.3 — 1.0 times the primary nozzle radius, r . 

Computation time — The numerical solutions were 

obtained by use of an IBM—360/50 digital computer.  A typical 

problem is solved in 30 to 40 axial steps, requiring a com- 

putation time of approximately 2 minutes. 

Program inputs and printout — The input parameters 

and parameters which are printed out are given in Appendix 

III. 
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SECTION IX 
CORRELATION OF 1-D CORE THEORY WITH EXPERIMENTS 

"Most of the correlations between theory and ex- 

periment have been made with the 2—D Core Theory (Part II). 

The 1—D Core Theory has been correlated with low speed air- 

air experiments in order to establish the incompressible 

values of the eddy viscosity constants (Section VI) and to 

establish the validity of the theory for constant density 

flows. 

I.   Low Speed Isobaric Mixing Experiments 

Forstall and Shapiro (Ref. 18) made a series of 

coaxial mixing experiments with u /u - 0.2, 0.25 and 0.5. 

The experimental configuration was ducted, but the duct 

was sufficiently large in diameter so that the induced axial 

pressure gradients were negligible.  Only the first and 

second mixing regimes were observed in these experiments. 

The experimental lengths of the inviscid core (length of 

the first regime) are shown in Fig. 6 along with the core 

lengths predicted by the 1-D Core Theory with k _ = 0.007. 

Also shown in Fig. 6 is the experimental inviscid core 

length from the zero secondary velocity experiments of 

Corrsin and Uberoi (Ref. 42).  The experimental inviscid 

core lengths were obtained by using the accepted procedure 

of plotting the second regime centerline velocity ratio, 

(u — u V(u. — u ) vs. x on a log—log plot and then c   a  j   a 
extrapolating the distribution back to the axial position 

where (u - u )/(u. — u ) equals one.  Referring to Fig. 6, c    a   j    a 
it is seen that the theoretical core length is smaller than 

the experimental value at low secondary velocity, but that 

the agreement is satisfactory at velocity ratios of 0.2 and 

0.25.  The theoretical core length is approximately 25 per 

cent larger than the experimental value at u /u. =0.5. 
a j 
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As discussed in Sections II and VI, this deviation from 

experiment at velocity ratios larger than about 0.3 is normal 

for the Prandtl eddy viscosity model. 

The axial distribution of the centerline velocity 

ratio, (u - uQ)/(u. - u ), is shown in Figs. 7a — d for the c    a   j    a 
Corrsin and Uberoi experiment and for the experiments of 

Forstall and Shapiro.  The theoretical distribution shown 

in Fig. 7a was computed at u /u. = 0.01 because the theory, 
a j 

as currently formulated, cannot be used when the secondary 
* velocity is zero .  Referring to Figs. 7a - d, the theory 

with k _, = 0.011 predicts a somewhat excessive rate of 
oil 

decay for the centerline velocity ratio for u /u. % 0, but 
a j 

the agreement is better for velocity ratios of 0.2 and 0.25. 

As was the case in the first regime, the predicted rate of 

mixing in the second regime for uVu. =0.5 (Fig. 7d) is 
a j 

considerably less than shown by the experiment. 

One other aspect of the value for k  should be 

noted.  In the first regime the mixing is initially two- 

dimensional in nature.  One would expect, therefore, that 

k _ should be approximately the same value as obtained 

from two—dimensional experiments.  Experimental two- 

dimensional mixing data for zero secondary velocity are 

usually correlated with the error function profile (Ref. 26), 

"/«,- = '/z [!+•<■*fr £)] 

* The Corrsin and Uberoi experiment was made without a duct. 
The theoretical curve of Fig. 7a was computed by assuming 
that the process was ducted, but the duct diameter chosen 
for the computation was large enough so that the resulting 
axial pressure gradients were negligible. 
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where the similarity constant, a,   is inversely proportional 

to the rate of growth of the mixing layer.  The accepted 

incompressible value for a is 12.  A certain value for a 
also implies a certain value for the rate of change with x 

of the velocity gradient at the half—velocity position in 

the mixing zone.  Computations have shown that the same rate 

of change of the velocity gradient at the half—velocity 

position is obtained for the error function profile with 

a  - 12 and for the cosine profile with k _ % 0.007.  This 

result, therefore, tends to substantiate the value of k _ ol 
which was used to correlate the 1—D Core Theory with 

coaxial mixing experiments. 

2.   Low Speed Jet Pump Experiment 

Mikhail (Ref. 31) reported experiments on a low 

speed jet pump with a cylindrical mixing duct.  The apparatus 

is shown schematically in Fig. 8 along with the initial 

conditions for the case considered here.  Both the primary 

and secondary streams were unheated air. 

The experimental duct pressure distribution is 

shown in Fig. 9 along with the results of the 1—D Core 

Theory.  All three mixing regimes are encountered in this 

configuration.  The influence of the wall boundary layer on 

the axial pressure distribution is considerable in this long 

mixing duct.  An approximate linear variation of the wall 

boundary layer displacement thickness, ö , was used to 

correct the duct contour for the effect of the boundary 

layer.  This wall boundary layer correction, although 

quite approximate, causes the theoretical pressure distri- 

bution to agree satisfactorily with the experiment. 

The centerline velocity distribution for the jet 

pump is shown in Fig. 10. The wall boundary correction is 

shown to have a relatively small influence on the center— 
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line velocity distribution.  In these correlations the third, 

regime eddy viscosity constant was assumed to be the same 

as the second regime constant.  The agreement between theory 

and experiment indicates that the theoretical model for the 

third regime is reasonably valid for an axial distance into 

that regime of at least three duct diameters. 

Based on these correlations of low speed mixing 

experiments, it appears that the theory as formulated 

provides a reasonably accurate representation of the con- 

stant density mixing process.  It should be noted, however, 

that the range of applicability of the Prandtl eddy viscosity 

model is limited to flows with low secondary velocities 

relative to the primary velocity. 
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PART II 
DUCTED MIXING THEORY WITH TWO-DIMENSIONAL INVISCID CORE FLOW 

(2-D CORE THEORY) 

SECTION X 

DEVELOPMENT OF BASIC DIFFERENTIAL-INTEGRAL EQUATIONS 

In Part I of this report the first regime flow was 

solved by assuming that the inviscid core flow is one- 

dimensional.  As pointed out in Section I, the one—dimensional 

core flow assumption is seriously in error for many practical 

ducted mixing problems. 

In this section, the 2—D Core Theory differential- 

integral equations are derived for the first mixing regime 

(Fig. 11).  The mixing zone and secondary flow are treated in 

essentially the same way as in Part I, the major difference 

being in the method of computing the inviscid core flow.  The 

basic differential—integral equations are derived with the 

inner mixing zone radius, r., as the lower limit on the inte- 

grals.  (It will be recalled that the corresponding lower limit 

is zero in the 1—D Core Theory integral equations.) A method 

of characteristics solution of the inviscid core flow then 

provides the boundary conditions (at r.) for the solution 

of the differential—integral equations. 

1.   Integration of Boundary Layer Equations 

The fundamental equations used in this analysis 

are the axial momentum equation and the continuity equation 

(Section IV): 

Momentum equation 

farg+f«rrS-fr(tr-)-rg       a, 
Continuity equation 
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If eq. (1) is integrated between the arbitrarily selected lower 

and upper limits of r, and r„, the following equation is 

obtained (Section IV): 

Note that the pressure, p,   is a function of only the axial 

coordinate. 

Integrating the continuity equation between the 

limits r. and r„ yields 

P^U»*-* -«".«m = - j&O'u-r') d-C (73) 

Substituting eq. (73) into eq. (5) to eliminate the p2V2u2r2 
term: 

-^ rr   4e* rr* 

Now let r. - r. and r„ - r . and note that i.  - t    - 0. 

Equation (74) becomes _ 

=- ^(^)  <»> 
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Applying Leibnitz*   rule to eq.   (75),   one obtains 

rt .   ^r* 

-uw^u.;^— =   -j^f^——) (76) 

Now consider the continuity equation (eq. 73). 

Letting r.^ = r± and r2 - rw, one obtains after applying 

Leibnitz' rule: -. 

?„ ww^ - P; ire ri = -^ j * *r ^ -fV*»' *i ^ 

but 

t^j i tu £2ü. 
thus 

^ j po^dr = p^-^ - p. a; rt- ^ (77) 

Equation (77) is the desired form for the continuity 
equation. 
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Substituting eq. (77) into eq. (76), one obtains 

jl^r-.ftu^-W^-^SiS') 
which is the desired form for the "total" momentum equation. 

To derive the second momentum equation, again 

;r ( 

(78) 

consider eq. (74).  Letting rn = r. and r„ = r , one obtains 

Applying Leibnitz* rule to eq. (79) one obtains 

(79) 

+<w»iuVw =££- = *•»,<•« -i£ai »w ' yv\ 

or 

(80) 
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which is the desired form of the half-radius momentum equa- 

tion. 

2.   Working Form of the Differentiol-lntegrol Equations 

By expanding the integral terms and noting that 

r = r. + b/2, one obtains the following set of differential- 
m   i 
integral equations. 

Continuity equation 

<w-fri+tf = P/^-^a^r^ (81) 

Total momentum equation 

ax ##) 
(82) 

Half—radius momentum equation 

a  f    2 a 
j2  ru» ^r-^i; ax 

Ct. 

-»- ti^^ - i£*L fe^ÖlTL*] 
(83) 

One aspect of these differential—integral equa- 

tions should be noted.  In the derivation, the boundary 

layer assumptions were assumed to apply in the (x, r) co- 

ordinate system (dp/ör = 0, etc.).  For systems in which 

the mixing layer is steeply inclined relative to the center- 

line, i.e., a highly underexpanded primary nozzle, it would 
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be more realistic to apply the boundary layer equations to 

a coordinate system aligned with a local characteristic flow 

direction. Attempts were made to derive the differential- 

integral equations in such a shifting coordinate system, but 

the resulting system of equations is prohibitively compli- 

cated. The complexity is caused by the necessity for matching 

the mixing layer region with the adjacent regions of inviscid 

flow.  It was decided, therefore, to use the differential- 

integral equations as formulated here, even though the 

results will be strictly consistent with the boundary layer 

assumptions only for small inclinations of the mixing layer, 

i.e., cos 0. % 1.  This restriction is not serious for the 

ducted mixing systems considered in this report; 0. rarely 

exceeded 15° - 20°.  Nevertheless, it is important that 

this restriction be clearly noted so that the equations will 

not be applied indiscriminately to mixing systems with 

large inclinations of the mixing layer. 
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SECTION XI 
MIXING ZONE PROFILES 

The velocity and density profiles in the mixing 

zone are computed with the same equations which were 

developed in Section V for the 1—D Core Theory.  In the 

velocity profile equation (eq. 28a), however, the velocity 

u. is replaced by u., defined as 

u. - V. cos 9. 

where V. is the total velocity vector at r. (an isentropic 

function of p ) and 6.   is the flow angle at r..  The method 
*w      i ö      l 

of characteristics solution of the inviscid core flow 

provides the inner boundary angle, 0.. 

The velocity at the control surface, r , is 

um = * (ui + ua> 

Because one does not integrate across the inviscid 

core flow in the 2—D Core Theory, the species conservation 

parameter, Q, (eq. 27, Section V) is evaluated in the 

following manner.  All of the species which do not originate 

from the central jet are evaluated, then this quantity is 

subtracted from the total mass flow in the system: 

i r rn+t 

Q = •^y I V^-HM; -zTj pu.(j-cWr 

(27a) 
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SECTION XII 
TRANSFORMATJON OF DIFFERENTIAL-INTEGRAL EQUATIONS 

A system of three differential-integral equations 

was derived in Section X for the 2—D Core Theory.  These 

equations are similar to the corresponding equations for 

the 1—D Core Theory, and are transformed by the same method 

as used in Section VII. 

The three basic equations are (Section X): 

Continuity equation 

5» ^<ir + 3it[ftLa( 
*w*-6v4±>: 

-t\'</-;n ~ftdt'n dry 
(81) 

Total momentum equation 

<±*y f*J& cu -n-^-^^n 
(82) 

Half—radius momentum equation 

ax 

&«-«;)(ni4£^^-ft^^- 
fo+V^-r^" 

The details of the transformation are identical 

to those of Section VII and will not be repeated here. 

Again, the variables (x, p , r., b) are considered indepen- 

(83) 
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dent.  After the transformation, the equations have the same 

form as in the 1-D Core Theory: 

Continuity equation 

dp, vu + Pi 
drj 

Total momentum equation 

3 a*      4 (55) 

Half—radius momentum equation 

apw   , L/   ^L; x ü  sLk. - u. 

(56) 

dX a-x: a.x- (57) 

The coefficients,?, G and H, however, are dif- 

ferent from the corresponding 1—D Core Theory coefficients 

and are given by the following equations. 

f ^[^-frc+q a.1 
aP«J (84) 

(85) 
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-      *-(frg+*S) +At 

****$£+*£)«** (86) 

Ä^/ctfi+u.4)^dr^J&^^fi)Al. 

^p.^.^ - ftuu^ni J^ (87) 

S(=tM^^-^j^^j^f^^a^ 
+ P^]t (88) 

-^Jfr^+u^)^ 

*r'jS*»Ä^'*)H (89) 

I 

G.~ ^L..^,...^ 
■^«■«•'■ff)^ 

I 

-f-^u ^fi+^ft^t (90) 
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° o 

o 0 

-U.^b* 

(91) 

(92) 

(93) 

"3 
s^*S+»*SH^+Wrf j^^+a-S)«^ 

+- 6*; - Um) *L n ^ + r*, fa +■ tvi.) 
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As in Part I, eqs. (55) - (57) are linear in the 

derivatives dp /dx, dr./dx and db/dx, and can be solved 

for the derivatives by use of Cramer's rule (eqs. 58—60, 

Section VII).  Equations (58) — (60) are again numerically 

integrated by use of the Runge—Kutta method. 

Many auxiliary functions are necessary to evaluate 

the coefficients F, G, and H.  Those functions which are not 

the same as those of the 1-D Core Theory (Appendix I) are 

presented in Appendix II.  It is important to note that 

the coefficients contain terms which depend on the flow 

angle, 9., at r..  The local value of 9. is computed in 

the method of characteristics solution of the inviscid 

core flow (Section XIII). 
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SECTION XIII 
METHOD OF CHARACTERISTICS SOLUTION OF INVISCID CORE FLOW 

Many terras appearing in the coefficients F, G and 

H (eqs. 84-95, Section XII) depend on the flow conditions 

at the inner mixing zone boundary.  In order to solve the 

system of equations, one must be able to evaluate the 

following parameters at r.:  0., du/dx, du/dr, dp/dr,( dp/dx (see 

Appendix II).  To provide these parameters, the inviscid 

core flow is developed (with the irrotational method of 

characteristics) simultaneously with the numerical solution 

of the equations for the mixing layer and inviscid secondary 

flow. 

1.   Interior Flow Solution 

The method of characteristics is a well established 

method for computing supersonic inviscid flow fields.  De- 

tailed discussions of the method of characteristics are 

presented in standard references on supersonic aerodynamics 

(Ref. 43, for example).  Briefly, the flow field solutions 

are obtained by computing along "characteristic" lines in 

the flow field which correspond to Mach lines.  The change of 

flow conditions along these characteristic curves is computed 

by solving the following set of ordinary differential equa- 

tions (for axisymmetric irrotational flow): 

_L/«lv\ -.i si** Sine   | /JA 

V Wr,3E = + *K«*oO Aa%,i(96) 

\dXj s £a.n(ö+o£) (97) 
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The upper sign refers to right running (Family I) charac- 

teristics and the lower sign to left running (Family II) 

characteristics.  The local Mach angle is denoted by a. 

Consider a unit process in the physical plane 

(Fig. 12).  If the flow conditions are known at points 1 and 

2 (which are not on the same characteristic), then eqs. (96) 

and (97) can be solved to locate point 3 (x„, r„) and to 

define V3 and 0g.  For a small unit process the Mach lines 

are assumed to be straight and eqs. (96) and (97) are 

written in finite difference form. As a first approximation 

one evaluates the coefficients in the difference equations 

at the initial conditions.  The unit process is then re- 

calculated using average values for the coefficients until 

the solution converges. 

In the inviscid core solution, the initial condi- 

tions are prescribed along a radial line AB at the primary 

nozzle exit plane (Fig. 13).  For an underexpanded primary 

nozzle, the flow will expand at the nozzle lip through a 

Prandtl—Meyer expansion until the local pressure is equal 

to p ...  If AC represents the Family I characteristic which 

originates as the last Mach line in the Prandtl—Meyer ex- 

pansion fan, then the flow in the region ABC can be com- 

puted, based on only the initial conditions.  Note, however, 

that the extent of region ABC depends on the value of p ,. 

2,   Boundary Solution 

Consider the flow near the inner mixing zone 

boundary at some downstream location, x (Fig. 14).  At x, 

the upstream solution has defined the values of p and r.. 

The derivatives dp /dx and dr./dx are also specified at x. 

Since the flow is completely defined at x, a new Family I 

characteristic can be generated from the boundary point D. 
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r , 

Fig. 12   Unit Process in Method of Characteristics Solution 
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ri(x) 

Family I Characteristic 
Originating as the Last 
Line in Prandtl-Meyer 
Expansion Fan 

x=0 

Fig. 13   Method of Characteristics Solution of Inviscid Core Flow 
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(x  +   Ax) 

Fig. 14   Solution ot a General Boundary Point 
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(The "interior" solution is thus extended outward by one 

Family 1 characteristic at each computation interval, Ax). 

With the conditions at x completely known, the 

Runge-Kutta method prescribes a series of intermediate points 

at which dp /dx, dr./dx and db/dx are to be computed. 

These specified points (x, p . r., b) do not necessarily 

correspond to points on the actual solution, but the solu- 

tion depends on a weighted combination of the intermediate 

results.  Such a Runge-Kutta point is shown as point E in 

Fig. 14. With the position of E specified, along with the 

pressure, the only unknown at E is the angle, 6..  The angle, 
9.,  which is required for the succeeding Runge-Kutta points, 

is determined by the following procedure.  A Family II 

characteristic EF is constructed^which intersects the 

last Family I characteristic, along which the flow is 

completely defined from the interior solution.  By an 

iterative solution of eqs. (96) and (97), the location 

of F and the value of 0. at E are determined. 
l 

After the system of equations is solved for p 

and r. at x + Ax (point G, Fig. 14), the above procedure 

is repeated to define the physically correct value of 9. 

at x + Ax. 

3.   Inner Boundary Derivatives 

The value of 6, at each Runge-Kutta point is 

computed with the procedure described in the preceding 

section.  In addition to 9., the derivatives du/dx, 

du/dr, dp/dx and dp/dr at r. must be computed at each 

Runge—Kutta point. 

Now consider the following system of equations 

which defines the flow in the inviscid core region: 
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du. =• £* <^* + §^ dr (98) 

dp-gd*+i^d,r 

PU- 3*   T   fcV      ^ (102) 

|^(fUL>r) +Jf(f^)s0 (103) 

After expansion and introduction of the equation of state, 

the continuity equation (eq. 103) may be written: 

?r 6x f ?r 57 + R=F"5X ^^r fr = " ptr       (103a) 

The above system of equations its linear in the derivatives 

and is solved for these derivatives at each Sunge-Kutta 
* point by means of standard matrix techniques . 

This method of computing the inner mixing zone boundary 
derivatives was suggested by the work of Loper and Lightsey 
(Ref. 44). 
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Referring to Fig. 14, the total differentials 

are represented by the following differences: 

d OL = U.u - Ui D 

dp = P*/E - FVJD 
Treating these total differentials as differences is 

admittedly approximate; however, the accuracy of this 

approximation is consistent with the accuracy of the 

method of characteristics solution which involves similar 

approximations. 
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SECTION XIV 
NUMERICAL CONSIDERATIONS-2-D CORE THEORY 

The computer program for the 2—D Core Theory is 

much more complex than the program for the 1—D Core Theory, 

and the details of the program will not be presented here. 

The purpose of this section is to give a brief discussion 

of the numerical solution from the point of view of the 

engineering results. 

Axial Step Size — The axial step size, Ax, for the 

Runge—Kutta integration of the system of differential equa- 

tions must be much smaller than the corresponding step size 

in the 1—D Core Theory.  The step size is chosen to be about 

the same size as a typical grid in the method of charac- 

teristics network (typically 0.05—0.10 times r ).  If the 

step size were to be larger, the accuracy of the "boundary 

solution" (Section XIII) would be poor. 

Method of Characteristics — The accuracy of the 

method of characteristics is well established as long as 

the network is made reasonably small compared to the local 

rate of change of the flow conditions.  One point of interest 

is that the network of points is redistributed along a 

radial line (by interpolation) at each axial station in the 

solution.  By this redistribution procedure, the problem of 

network "foldback", indicative of the onset of boundary 

shock formation, is avoided.  The method of characteristics 

portion of the program has been compared with standard "jet 

plume" programs and the results are nearly identical. 

Computation Time — The numerical solutions were 

obtained by use of an IBM—360/50 digital computer.  A 

typical problem is solved in 100 to 120 axial steps, 

requiring a total time of approximately 10 minutes. 
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Program Inputs and Printout - The input parameters 

and parameters which are printed out are given in Appendix 

III. 
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SECTION XV 
REGIMES OF SOLUTIONS 

The method of computation depends on the mode of 

operation of the ducted mixing system (Fig. 2, Section I). 

In all cases, the procedure is to assume a value of the 

initial static pressure, p ,, make a flow field computation, 

and then iterate on p ,  until some downstream criterion is 

satisfied.  In the "downstream choking" and "back pressure 

dependent" modes the criterion is either that the flow must 

choke at the duct exit or that the duct exit pressure must 

match a prescribed back pressure. 

The problem is much more complex in the case of 

the "upstream choking" mode (Fig. 2a, Section I).  In this 

mode the flow must accelerate to the critical condition, and 

then the solution must pass smoothly into the supercritical 

regime.  When the flow becomes critical, the determinant |D| 

for the system of equations (Section VII) is zero.  The 

basic premise which is used to compute the correct solution 

is that the static pressure is continuous through the criti- 

cal region; therefore, one iterates on p , until the deter- 

minants |D| and |p[ (Section VII) simultaneously become zero. 

The technique for finding the correct solution is illustrated 

in Fig. 15.  If one chooses a value of p , which is higher 

than the correct value, the flow will accelerate and then 

decelerate, with |D| remaining positive.  If the selected 

p , is too low, then |D| will go to zero upstream of the 
position where |p| goes to zero. 

Although not required by this solution technique, 

the determinants |R| and |B| (Section VII) also go to zero 

at the critical section.  Thus the parameters r and b are 

continuous through the critical region. 
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Mr Critical 
Section 

ID 

0 

Correct 
Solution 

Axial Distance, x 

Fig. 15   Solutions for Ducted Mixing System Operating in Upstream Choking Made 
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In principle, one needs only to define the correct 

value of p , within sufficiently small limits and then the 
W J- 

solution will run smoothly through the critical point.  By 

luck, the first solution attempted ran smoothly without a 

very small tolerance on p ..  It was later found that, in J *wl ' 
general, the solutions would not run smoothly even with a 

tolerance on p , as small as one part in a million.  To 

eliminate the necessity for the extremely large number of 

iterations required to bracket p , to the.required tolerance, 

the following procedure was used.  After bracketing p , within 
4 a reasonably small range (to one part in 10 , typically), the 

solution is rerun for p , at the average value of the last 

"low" and "high" solutions (Fig. 15).  The secondary stream 

total pressure is arbitrarily increased by a small amount 

(typically 1%) at the axial computation station immediately 

upstream of the position where the flow tends to become 

critical.  The solution then runs smoothly into the super- 

critical regime.  This method of computing the supercritical 

solutions has been automated in the computer program. 

If one does not know beforehand in which mode that 

a particular ducted system will operate, the procedure is to 

select a high initial value of p ,.  Successive computations 
W X 

are then made at lower and lower values of p , , until (1) the 

duct exit pressure matches the prescribed back pressure, 

(2) the flow chokes at the duct exit (indicated by |D| = 0) 

or (3) the flow becomes critical at some upstream position 

in the duct. 

It should be noted that the above procedures are 

also applicable to the 1-D Core Theory, although the upstream 

choking mode would not ordinarily be encountered if the 

inviscid core flow is assumed to be one-dimensional. 
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SECTION XVI 
CORRELATION OF 2-D CORE THEORY WITH AIR-AIR EJECTOR EXPERIMENTS 

The 2—D Core Theory has been correlated with the 

air-air ejector experiments of Chow and Addy (Ref. 5) and 

of Chow and Yeh (Ref. 45).  All of the experimental cases 

considered here were operated in the upstream choking mode, 

i.e., with relatively low back pressure.  The experimental 

configurations are shown in Fig. 16. 

1.   Constant Area Air-Air Ejectors 

Chow and Addy (Ref. 5) presented a series of 

experiments for the cylindrical air—air ejector shown in 

Fig. 16a.  The primary nozzle was designed to provide a 

uniform primary flow at M.-, = 2.  Only the nozzle configura- 

tion with the thinnest lip will be considered here.  Both 

the primary and secondary streams were unheated air. 

The experimental mass flow ratio, w /w., is shown 
a j 

in Fig. 17, along with the results of the 2-D Core Theory. 

The agreement between theory and experiment is very satis- 

factory for the entire range of p /p^. over which the 3 oa oj 
theory is applicable.  At total pressure ratios below about 

0.05, the mixing zone impinges on the wall, and the 2—D Core 

Theory as presently formulated is not valid.  To compute 

these low secondary mass flows, Chow and Addy used the base 

pressure analysis of Korst, et al. (Ref. 26), suitably 

modified to include base bleed effects.  Such a base pres- 

sure analysis was not incorporated into the 2-D Core Theory 

because the main interest is in ducted mixing with relatively 

large secondary flows.  The theoretical results of Chow and 

Addy are not shown in Fig. 17; they are nearly identical to 

the 2-D Core Theory results. 
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a.   Cylindrical Duct of Chow and Addy (Ref. 5) 

Parabolic  Duct 

^^      M        -  2.0 rw/rn  =  1.75 + 0.02(x/rn) 

b.   Parabolic Duct of Chow and Yeh (Ref. 45) 

0 
x: 

V&PZ 
Displaced Parabolic Duct 

M  - 2.0   rv/rn 
= i-75 + °-02 (x/rn - 2) 

c.   Displaced Parabolic Duct of Chow and Yeh (Ref. 45) 

Pig. 16   Air-Air Ejector Configurations 
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The initial secondary Mach number, M ,, is plotted 

against the pressure ratio p -,/vn-   in Fig. 18.  Again, the 
WJ.  oj 

agreement between the 2-D Core Theory and experiment is very 

good over the range of applicability of the theory.  For 

p , > p.,, M - = 1 which corresponds to Fabri and Paulon's 

"saturated supersonic regime.rf 

The wall pressure distributions from Chow and Addy's 

experiments are shown in Fig. 19.  The 2-D Core Theory predicts 

the experimental distributions fairly well for all three pres- 

sure ratios shown. Also shown in Fig. 19 is the locus of 

positions where the theoretical flow becomes critical.  It is 

noteworthy that the secondary Mach number is subsonic at the 

critical point, and becomes more subsonic as the secondary flow 

is decreased.  The system of equations is written for the 

combined supersonic and subsonic portions of the flow, and 

the results reflect that if part of the flow is supersonic 

at the critical point, then another part of the flow must be 

subsonic.  This phenomenon is consistent with some of the 

recent results on the choking of a nonuniform flow (Ref. 46, 

for example)*. 

2.   Variable Area Air-Air Ejectors 

Chow and Yeh (Ref. 45) presented a series of experi- 

ments for an air-air ejector in which the wall shape was 

parabolic (Fig. 16b).  They also made experiments with the 

parabolic duct displaced downstream, so that the minimum duct 

area was located 2r downstream from the primary nozzle exit 

(Fig. 16c). 

The mass flow ratio, wVw., is shown in Fig. 20 a J 
for the parabolic duct (Fig. 16b).  As was the case for the 

cylindrical duct, the 2-D Core Theory predicts the experi- 

mental results quite accurately over the entire range of 

applicability. 

* The interpretation that |D| = 0 corresponds to physical choking 
is strengthened by the fact that |D| - 0 occurs almost exactly at 
M = 1 for coaxial flows computed with the assumption of zero 
mixing zone shear stress (no mixing case). 
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Fig. 19   Wall Pressure Distributions in a Cylindrical Air-Air Ejector 
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The initial secondary Mach number, M ,, is plotted 

against the pressure ratio pml/p_„ in Fig. 21 for both the 

parabolic duct and the displaced parabolic duct.  Because of 

the downstream displacement of the minimum area, the saturated 

supersonic regime is not encountered with the displaced 

parabolic duct. 

The wall pressure distributions for the displaced 

parabolic duct are shown in Fig. 22.  Some of the experiments 

were made with fairly high back pressure, and these experi- 

mental distributions show that the back pressure has caused 

the wall boundary layer to separate downstream of the criti- 

cal point (especially for p ,/p . = 0.06).  The 2-D Core wx  OJ 
Theory predicts the experimental distributions fairly well, 

especially at the lower values of Pwi/Poa (lower values of 

w- 
Based on these correlations of air—air ejector" 

experiments, it appears that the 2—D Core Theory accurately 

represents the flow processes in such configurations.  Even 

though u /u. exceeded 0.5 in the downstream portions of the a J 
flow fields, the deficiency in the Prandtl eddy viscosity 

model is not apparent from these correlations.  As pointed 

out by Chow and Addy, the flow in such air—air ejectors 

(with relatively large secondary mass flows) is predominately 

controlled by the inviscid stream interactions.  The effects 

of mixing are small enough so that errors in the mixing rate 

are not readily discernible. 

Because the viscous effects are small in these 

supersonic air—air ejector configurations, the accurate 

prediction of the experimental performance depends primarily 

on accurately computing the inviscid flow fields.  These 

correlations of the 2-D Core Theory with experiment indicate, 

therefore, that the present method of computing the inviscid 

flowsis satisfactory, at least in the near field (x<5-6 r ). 
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SECTION XVII 
CORRELATION OF 2-D CORE THEORY WITH ROCKET-AIR MIXING EXPERIMENTS 

The main objective of this investigation has been 

to predict the performance of ducted mixing systems in which 

chemical reactions occur.  Peters, et al. (Ref. 6) and 

Cunningham and Peters (Ref. 7) presented experimental re- 

sults on ducted mixing systems in which the primary stream 

was the exhaust from a hydrogen—oxygen rocket and the 

secondary stream was unheated air.  The rocket was operated 

with approximately 2.5 times stoichiometric fuel (O/F = 3.2), 

therefore, there was potential for considerable heat release 

in the mixing process.  The rocket nozzle area ratio was 

approximately 5, and the rocket was operated with a com- 

bustion chamber pressure (Poi) of approximately 20 atm. for 

all tests.  The two mixing duct configurations shown in 

Fig. 23 will be considered here.  Experimental results were 

presented in Ref. 6 for the conical mixing duct of Fig. 23a. 

The mixing system was operated in the upstream choking mode 

(Fig. 2, Section I).  Results were presented in Ref. 7 for 

the same basic apparatus, except that a cylindrical exten- 

sion was added to the conical mixing duct (Fig. 23b) so that 

the system operated in the downstream choking mode.  Results 

were also presented in Ref. 7 for the configuration of 

Fig. 23b operated in the back pressure dependent mode. 

References 6 and 7 present experimental wall 

pressure distributions, secondary—primary mass flow ratios, 

mixing duct thrust ratios, and radial distributions of Pitot 

pressure and gas composition at the duct exit plane. 

The mixing duct thrust, F,, is defined as the 

axial pressure force exerted on the mixing duct between the 
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a.   Conical Mixing Duct (Ref. 6) 
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b.   Conical Mixing Duct with Cylindrical Extension (Ref. 7) 

Fig. 23   Rocket-Air Mixing Configurations 
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entrance and exit sections, i.e., 

Fj   = 2*rr p^wf^dx <io4> 

where L is the length of the mixing duct and r^ is a known 

function of x. 

1.   Mixing System Operating in the Upstream Choking Mode 

This section presents the correlation of the 2—D 

Core Theory with the experimental results for the configura- 

tion of Fig, 23a (Ref. 6). 

Axial distribution of theoretical flow parameters — Before 

discussing the correlations of the 2—D Core Theory with 

experiments, consider the theoretical distributions of the 

flow field parameters shown in Fig. 24.  The axial distribu- 

tions of p , r., b and Q are shown in Fig. 24a for a typical 

ducted mixing computation.  The distributions of 0. and the 

coefficient determinant, |D| , are shown in Fig. 24b.  This 

flow field solution was obtained by using the procedure 

described in Section XV, i.e., the initial static pressure, 

p ,, was iterated until the solution was bracketed to a small 

tolerance.  The secondary stream total pressure, Poa, was 

then increased slightly (by 0.3% in this case) to allow the 

solution to proceed smoothly into the supercritical regime. 

The pressure distribution, PT^/PO^» shown in 

Fig. 24a indicates that the secondary Mach number, M„, is 
JBL 

initially 0.71; M_ increases to approximately 0.94 at the 

critical section.  The value of H at the duct exit is 

approximately 1.3. 

The axial distribution of r. (Fig. 24a) shows the 

usual tendency of a jet from a conical nozzle to have a 

periodic structure.  If the flow were inviscid, the second 

peak in r. would be about as large as the first peak.  With 
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mixing, the core flow tends to expand and contract, but with 

gradually decreasing r..  This gradual decrease in r. is 

caused by the mixing zone growing into the inviscid core flow. 

If the duct were sufficiently long the inviscid flow would 

eventually be completely dissipated. With this configuration, 

however, only the first mixing regime is encountered. 

The axial distribution of b (Fig. 24a) shows that 

the mixing zone growth rate, db/dx, is not approximately 

constant, but is significantly influenced by the periodic 

nature of the inviscid core flow.  Computations have been 

made for similar pressure distributions with the 1—D Core 

Theory, and no large variation of db/dx was predicted.  It is 

concluded, therefore, that the variations of db/dx indicated 

by Fig. 24a are primarily caused by the angularity of the 

flow at r..  There is a definite qualitative relation between 

the distribution of 9.   (Fig. 24b) and b, with negative values 

of 9.   tending to increase the mixing zone growth rate. 

The axial distribution of the coefficient deter- 

minant, |D| , for the system of equations (Fig. 24b) shows 

that JDJ is positive for subcritical flow and passes smoothly 

through zero at the critical point. 

The species conservation parameter, Q, (defined by 

eq. 2'r. , Section XI) is shown in Fig. 24a.  It will be recalled 

that if Q does not deviate from unity, then the use of eq. 

<25a) (Section V) to relate the velocity, composition and 

enthalpy profiles is justified.  It is seen that Q is 

initially unity, then undergoes a step decrease to about 0.98 

at the critical section where p  was arbitrarily increased. oa 
Downstream of the critical section, Q gradually increases and 

has a value of 1.01 at the duct exit.  This behavior of Q is 

typical for all of the rocket-air mixing cases considered. 

In no case does Q deviate from unity by more than about 2%. 
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It can be concluded, therefore, that eq. (25a) satisfactorily 

relates the species and enthalpy profiles to the mixing zone 

velocity profiles, at least for use in an integral method. 

Wall pressure distributions - Experimental wall pressure 

distributions are shown in Figs. 25a and 25b for two values 

of the total pressure ratio, p /pÄ^.  Also shown are the F oa oj 
pressure distributions predicted by the 2-D Core Theory with 

the assumption of equilibrium mixing zone chemistry.  The 

theoretical pressure distribution agrees fairly well with the 

experiment in the upstream half of the duct, but falls some- 

what below the experiment in the downstream part of the flow. 

One should note the tendency of the inviscid core flow to 

alternately expand and contract (Fig. 24a) which has a 

corresponding effect on the wall pressure distribution.  The 

theoretical second peak in r is apparently too small.  This 

deviation from experiment may be explained, at least quali- 

tatively, by the presence of shock waves in the experimental 

core flow.  If the total pressure of the core flow were re- 

duced, on the average, by a system of shock waves, then the 

core flow would occupy a larger area in order to satisfy 

continuity relations.  The greater area occupied by the core 

flow would decrease the area available for the supersonic 

secondary flow, therefore, the theoretical wall static pres- 

sure would be increased in the downstream part of the flow. 

A theoretical pressure distribution is also shown 

in Fig. 25a for the case of no mixing.  Upstream of the criti- 

cal section, the wall pressure is slightly lower than in the 

case with mixing.  Because of the higher M ,, the secondary 

mass flow is approximately 3%  higher for the zero mixing 

case.  The theoretical pressure distribution for zero mixing 

is considerably lower than the theoretical distribution with 

mixing in the downstream part of the flow.  Consequently, the 

mixing duct thrust, F,, is about 25% lower than the value 

obtained with mixing. 
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Comparing the two theoretical pressure distributions 

in Fig. 25a, one sees that the mixing acts as blockage to the 

flow. An effective displacement thickness, 6*, for the 

mixing layer is then positive.  It is noteworthy that for 

mixing in air-air ejectors, such as considered in Section 

XVI, the effective displacement thickness is negative, i.e., 

the secondary flow is larger with mixing than without mixing 

(Ref. 35).  The positive 6* in the rocket-air mixing system 

can be attributed in part to the large heat release in the 

mixing layer. 

Second-primary mass flow ratio - The experimental mass 

flow ratio, w /w., is shown in Fig. 26 as a function of 
a  j 

p /p ..  The 2-D Core Theory predicts the correct form for *oa *oj J   * 
the mass flow function, but the theoretical mass flows are 

4-5% higher than the experiment.  The quantitative deviation 

between theory and experiment can perhaps be attributed to 

deviations from conical flow in the primary nozzle.  The 

theoretical computations were based on a source-type flow 

in the primary nozzle, but it is well known that the source 

flow assumption can be considerably in error for such short 

conical nozzles. 

Mixing duct thrust - The mixing duct thrust is shown in 

Fig. 27 as the ratio F./F where F  is the vacuum thrust of w a n       n 
the primary nozzle. The 2-D Core Theory predicts the thrust 

ratio fairly well at p /p . = 0.025, but the theoretical *        roa *oj 
value is about 8% below the experiment at p /p . = 0.034. oa oj 

Radial Pitot pressure profiles - The radial distribution 

of Pitot pressure at the duct exit is shown in Figs. 28a and 

28b for two values of p Vp ..  It should be noted that the ^oa ■'oj 
exit plane distributions are composite plots of several short 

duration tests. Because of the difficulty in exactly repro- 

ducing all of the experimental conditions from test to test, 
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considerable data scatter is inevitable .  The theory 

adequately predicts the shape of the Pitot pressure profile 

for the higher pressure ratio case (Fig. 28a), but the 

theoretical profile is displaced radially outward compared 

to the experiment.  The same is true of the Poa/Poi 
= 0.025 

case (Fig, 28b), and in addition, the experiment shows a 

decrease in p ' near the centerline of the duct.  This de— o 
crease in p * is undoubtedly caused by the presence of strong 

shock waves in the inviscid core flow.  The shock system 

would tend to be somewhat stronger for lower values of 

p /p . compared to higher pressure ratios because the pri- 

mary flow is initially underexpanded to a greater extent. 

Radial composition profiles — Before considering the 

experimental composition profiles at the duct exit, the 

differences between the frozen and equilibrium profiles will 

be discussed.  The experimental technique reported in Refs. 6 and 

7 was to take a sample of gas, then analyze it after removing 

the water vapor.  The composition profiles were then pre- 

sented as "dry mole fractions" of 0„, H2 and N«.  The 

theoretical dry mole fraction profiles across the mixing zone 

are shown in Fig. 29.  The major characteristic of the 

equilibrium profiles is that the N„ tends to peak, and the 

H« goes to zero, near the stoichiometric point in the mixing 

layer.  The frozen distributions, on the other hand, are 

monotonic and continuous across the mixing zone. 

* 
Measurements of Pitot pressure and gas composition were 

made across the entire duct exit plane during the AEDC experi- 
ments.  The flagged symbols represent measurements made on 
the opposite side of the centerline from the measurements 
represented by the unflugged symbols (Figs. 28, 30, 34 and 35). 
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Experimental radial profiles of H2, 02 and N2 are 

shown in Figs. 30a and 30b for p /p . - 0.033 and 0.025, & *oa *oj ' 
respectively.  Although there is considerable scatter in the 

data, the 2—D Core Theory with equilibrium chemistry predicts 

the shape of the experimental profiles reasonably well, es- 

pecially the tendency of the H„ to go to zero within the 

mixing zone.  As was the case with the Pitot pressure profiles, 

the theoretical profiles are displaced outward from the duct 

eenterline compared to the experimental profiles.  This out- 

ward displacement; of the mixing zon<? can be explained by the 

neglect of shock waves in the inviscid core flow.  If the 

shock waves were included in the theory, then the momentum of 

the core flow would be less than the isentropic momentum, and 

the mixing zone would tend to be oriented more toward the duct 

eenterline.  In general, alteration of the momentum ratio in 

a two stream mixing process causes the mixing zone to shift 

toward the stream which is decreased in relative momentum. 

Comparison of 1—D Core Theory with 2—D Core Theory — Al- 

though not well adapted for analyzing mixing systems operating 

in the upstream choking mode, the 1—D Core Theory can be 

applied to such flows.  The central stream is assumed to be 

initially uniform.  Immediately downstream from the primary 

nozzle the primary and secondary streams are assumed to under- 

go isentropic area changes such that the pressures are 

equilibrated; the combined primary and secondary stream areas 

must equal the initial duct area.  This initial readjustment 

process between the two streams is the same as the "quasi- 

one—dimensional" approaches discussed in Section I, with the 

additional requirement that the readjustment process occurs 

instantaneously. 

Applying the preceding procedure to the ducted 

mixing system, the secondary stream choking section occurs 

at the duet entrance.  For the range of Poa/P01 reported 
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in Ref. 6, the secondary mass flow, w . is 5 to 7% higher a 
than predicted by the 2—D Core Theory (Fig. 26).  Because the 

secondary flow is initially sonic, p„Fl/p^Q = 0.528, con- 

siderably lower than predicted by the 2—D Core Theory 

(Fig. 25).  The wall pressure monotonically decreases with 

downstream distance, and the mixing duct thrust is sub- 

stantially lower than predicted by the 2—D Core Theory. 

These results clearly show the need for the 2—D Core Theory 

for mixing systems operating in the upstream choking mode. 

It should be noted that a less refined version of 

the 1—D Core Theory was used in Ref. 6 to compute the theo- 

retical performance of the rocket—air mixing system operated 

in the upstream choking mode.  The flow upstream of the 

secondary stream choking section was computed by an approxi- 

mate inviscid technique.  The plume from the primary nozzle 

was approximated by a constant pressure plume at the secon- 

dary stream sonic pressure (plume computed by a standard 

method of characteristics program).  Downstream from the 

choking section the duct wall was assumed to be shifted 

inward to account for the difference between the plume area 

and the one—dimensional primary stream area.  The mixing 

theory computation was then initiated at the secondary 

stream choking section. 

Although the preceding procedure gives results 

comparable to the 2—D Core Theory for the experiments con- 

sidered here, it was pointed out in Ref. 6 that the proce- 

dure is questionable for many mixing configurations.  For 

example, if the axial distance to the secondary stream 

choking section is large compared to the duct length, then 

most of the influence of the mixing process is neglected. 

2.  Mixing System Operated in the Downstream Choking Mode 

This section presents the correlations of the 2-D 

Core Theory with experimental results for the configuration 
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of Fig. 23b operated in the downstream choking mode (Ref. 7), 

The theoretical computations for these cases were made by 

iterating on p , until the coefficient determinant, | DJ , 

was equal to zero at the duct exit plane. 

Wall pressure distributions — Experimental wall pressure 

distributions are shown in Figs. 31a-c for Poa/P0-j of 0.036, 

0,0304, and 0.027, respectively.  The 2—D Core Theory pre- 

dicts the correct shape for the pressure distributions, but 

the theoretical pressure is generally too high.  This dis- 

agreement between theory and experiment is more pronounced 

at p /p  = 0.036 than at the lower pressure ratios.  As was oa oj 
the case for the upstream choking mode, the deviation of 

theory from experiment in the downstream part of the flow 

can be attributed to the neglect of shock waves in the 

theory.  The inclusion of shocks in the theory would cause 

the area occupied by the inviscid core flow to increase, and 

the area for the subsonic secondary flow would decrease. 

Consequently, the wall pressures would be decreased. 

Note that the inviscid core flow is completely 

dissipated in this configuration, and the flow at the duct 

exit is in the second mixing regime.  It should also be noted 

that the flow is strongly influenced by viscous effects. 

Without mixing, this configuration would operate in the up- 

stream choking mode.  Comparing the pressure distributions 

of Figs. 25 and 31, one sees that the addition of the con- 

stant area extension to the conical mixing duct causes the 

wall pressure to be maintained at a high value for the 

entire duct length.  This high wall pressure is desirable 

for a propulsion system because the wall pressures are 

directly equivalent to axial thrust. 

Secondary—primary mass flow ratio — The experimental mass 

flow ratio, w /w., is shown in Fig. 32 as a function of the 
a j 
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total pressure ratio.  The 2—D Core Theory predicts the 

correct form for the mass flow function, but the theoretical 

mass flows are 10—15% higher than experiment.  The rocket 

engine used for these experiments had a lower combustion 

efficiency than the rocket in Ref. 6.  Consequently, the 

theoretical mass flow, w., is about 4% below the experimen- 

tal w. for a given p ..  The theoretical and experimental 

values of w /w. shown in Fig. 32 are nondimensionalized a J 
with the corresponding value of w..  Because the theoretical 

«J 
w. is lower than the experimental w., the theoretical mass 

flow ratio tends to be too high.  The agreement between 

the theoretical and experimental values of w is, therefore, 
a. 

better by about 4% than indicated by Fig. 32. 

Mixing duct thrust — The mixing duet thrust ratio, F,/F 

is shown in Fig. 33.  Because the theoretical wall pressures 

are generally higher than experiment, the theoretical thrust 

ratio is also too large.  The theoretical thrust ratio is 

about 6% larger than experiment at the lower values of 

p,/p ., and about 16% too large at the higher values of the oa  oj 
total pressure ratio. 

Radial Pitot pressure profiles — The exit plane distri- 

butions of the Pitot pressure are shown in Figs. 34a and 34b 

for p,.-/p_H of 0.036 and 0.027, respectively.  Considering 

the data scatter, the agreement of theory and experiment 

is fair for Poa/P0.j = 0.036.  The experiment for Poa/Poi ™ 
0.027, however, shows very low Pitot pressures compared 

with the theory near the duct centerline.  A strong shock 

system has undoubtedly occurred in the inviscid core flow 

upstream of the duct exit. As was the case for the upstream 

choking mode, a stronger shock system would be expected as 

the total pressure ratio is decreased (greater underexpansion 

of the primary nozzle). 
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Radial composition profiles — Exit plane profiles of H„, 

0o and N„ are shown in Fig. 35 for p„„/p„., = 0.036.  The z     & oa oj 
agreement between theory and experiment is quite good for this 

case.  The experimental N„ distribution clearly shows the 

peak predicted by the theory with the assumption of equili- 

brium chemistry.  These results leave little doubt that the 

assumption of equilibrium mixing zone chemistry is good for 

these experimental conditions. 

Exit plane choking parameter - These computations for a 

ducted mixing system operating in the downstream choking 

mode were made by assuming that choking occurs at the duct 

exit, and that choking corresponds to the system of equations 

becoming critical (JDJ =0).  It is of interest to compare 

these results with an exterior hypothesis about the choking 

of a nonuniform flow.  Herpfer (Ref. 46) derived a choking 

criterion for nonuniform flow based on the principle that 

choking corresponds to a condition of maximum mass flux.  He 

assumed that there are no radial pressure gradients in the 

flow and that the local speed of propagation is the isen— 

tropic value.  Choking then occurs when the parameter Ch, 

(105) 

O 
is equal to zero.  This choking criterion states that if a 

portion of a choked flow is supersonic, then another por- 

tion of the flow must be subsonic. 

The parameter Ch was computed in the second 

regime for the ducted mixing conditions presented in this 

section.  If one defines an effective uniform stream Mach 
number, M , such that 
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(l-Muf-)       z 
chairTFnFrm 

then M  should be unity when D| = 0 if Ch = 0 is the 

correct choking criterion.  From the ducted mixing theory, 
i i    * M  was found to be 0.94 ~ 0.95 when jDj = 0 .  Thus the 

system of equations for the ducted mixing problem shows that 

part of the nonuniform flow is indeed subsonic when the flow 

becomes critical.  The value of the secondary Mach number, 

M , is even lower than would be predicted by Ch = 0.  In— 

spection of Fig. 31 shows that the -theoretical value of 

Pw/p  is approximately 0.8 at the duct exit, therefore, M 

is approximately 0.57. 

3.   Mixing System Operated in the Back Pressure Dependent Mode 

This section presents correlation of the 2—D Core 

Theory with experimental results for the configuration of 

Fig. 23b operated in the back pressure dependent mode.  The 

Theoretical solutions were obtained by iterating on p . until 

the thto^ctical wall prssssjre- matched the experimental pres- 

sure ai th<- labt std-ticn in the mixing duct where the static 

pressure was m^a^ured. 

w To svaLaat:; -.'l- (106) an effective vaiu^ of y  must be 
chosen: however, the r-S;;Lts for Mu are insensitive to the 
value chosen for y. 

** For th^se experimental, conditions, pw^ is higher than the 
primary nozzJe exit pressure.  The 2—D Core Theory is not 
applicable, to an over-. Kpanded primary nozzle, therefore, the 
computations were madr; »vi th the following approximation.  The 
conical primary nozzle was assumed to be shorter than the 
experimental nozzle (with a smaller area ratio) such that the 
nozzle exit pressure was slightly higher than p ,. 
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Wall pressure distributions - Axial distributions of 

wall static pressure are shown in Figs. 36a and 36b for two 

values of p /p ..  In these cases the theoretical pressure *oa *oj 
naturally agrees well with experiment in the downstream part 

of the duct, but the theory is too low near the duct entrance 

As a result of the low theoretical values for p  , the 

theoretical values of the secondary—primary mass flow ratio 

are too high (by 32% and 28%, respectively).  The theoreti- 

cal thrust ratios are much less in error, being low by 6—7%. 
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SECTION XVIII 

CONCLUSIONS 

An analytical model has been presented for the 

turbulent mixing of coaxial streams inside a duct of arbi- 

trary shape.  The influences of nonuniform inviscid core flow 

and of equilibrium chemical reactions have been included in 

the analysis.  Even though the current detailed knowledge 

about turbulent flows with chemical reactions is meager, the 

use of integral methods permits reasonably accurate compu- 

tations of the flow in complex mixing systems.  An important 

point in the analytical model is the technique used to couple 

the integral solution for the mixing layer and secondary flow 

with the solution for the nonuniform inviscid core flow 

(treated with the method of characteristics).  This technique 

should be applicable to other supersonic viscous interaction 

problems in which integral methods can be applied to the 

viscous layer. 

The analytical and experimental results which were 

discussed in Section XVII clearly show that viscous effects 

are predominant in certain types of ducted mixing systems. 

In some cases, the viscous effects completely change the 

character of the flow from that predicted by inviscid theories, 

Consequently, it is essential that the viscous and inviscid 

portions of the flow be computed simultaneously for such 

mixing systems- 

The main emphasis of this investigation has been 

placed on predicting the performance of ducted mixing systems 

which are strongly influenced by viscous effects.  Of course, 

the theoretical model is also applicable to flows which are 

weakly influenced by mixing, such as supersonic air—air 

ejectors operating in the upstream choking mode.  The present 

theory accurately predicts the experimental performance of 
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such air—air ejectors, but the theory offers no quantitative 

improvement over the superposition technique of Chow and 

Addy (Ref. 5). 

Many assumptions have been made in the development 

of the present analytical model.  Extensive correlations of 

the theory with experiments, however, have shown that the 

various assumptions are acceptable, or at least not pro- 

hibitively inaccurate.  The method of treating the flow in 

the mixing layer appears to be satisfactory considering the 

current state of knowledge about free turbulent mixing in 

the regime of interest.  There is no point in discarding the 

assumptions of mixing zone profile similarity and of unity 

Prandtl and Lewis numbers until detailed and precise experi- 

mental results are available for mixing with large density 

gradients and chemical reactions.  The assumption of equili- 

brium mixing zone chemistry yields good results for the 

rocket—air mixing systems considered in this investigation. 

However, the theory should be applied with caution to mixing 

systems for which there is no experimental verification for 

the assumption of equilibrium chemistry. 

The weakest aspects of the present theory are (1) 

the model for the eddy viscosity, and (2) the assumption that 

the inviscid core flow is irrotational (without shocks).  The 

eddy viscosity model is based on the Prandtl incompressible 

model, which is known to be inadequate when the secondary 

velocity is larger than about 0.3 times the primary velocity. 

Although the correction used to account for the influence 

of density gradients gives satisfactory results for the cases 

considered in this investigation, the correction needs to be 

checked against a broad range of experiments.  It is hoped 

that the current research on free turbulent mixing will re- 

sult in an improved semi—empirical model for the eddy 

155 



AEDC-TR-6B-270 

viscosity; such an improved eddy viscosity model could 

easily be incorporated into the present ducted mixing theory. 

It is thought that the major source of quanti- 

tative disagreement between the present theory and ducted 

rocket—air mixing experiments is the neglect of shock waves 

in the inviscid core flow.  There is no conceptual problem 

in incorporating the rotational method of characteristics 

(with shock waves) into the present theory.  The method of 

computing the inviscid core flow (Section XIII) would be 

the only change required in the existing computer program; 

the system of differential-integral equations for the mixing 

layer and the inviscid secondary flow would be unchanged. 

In spite of the deficiencies in the theoretical 

model developed during this investigation, the results are 

certainly qualitatively correct.  In addition, the theoreti- 

cal results are sufficiently accurate so that the theory 

may be considered a useful tool for the engineering analysis 

of ducted mixing systems. 
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APPENDIX I 
AUXILIARY FUNCTIONS FOR 1-D CORE THEORY 

In Section VII, the basic differential-integral 

equations for the ducted mixing problem were transformed 

into a system of linear first order differential equations 

which is amenable to numerical solution.  The numerous 

auxiliary equations needed to evaluate the coefficients 

F, G and H are presented in this appendix. 

The following equations are developed in logical 

order in that all the parameters in a particular equation 

are developed prior to use in that equation.  All of the 

equations for the parameters which appear directly in the 

coefficients F, G and H are denoted by an asterisk at the 
+ 

equation number, for example eq. (A—11) . 

Note that in the evaluation of the terms for the 

coefficients the independent variables are considered to be 

(x, pw, r1, b) in the first regime, (x, pw, uc> b) in the 

second regime and (x, p , u , u ) in the third regime. ™        c        w 

1.   Isentropic Stream Equations 

A number of relations which are used in all three 

regimes are obtained from the assumption that the inviscid 

streams are isentropic.  The following parameters are 

assumed to be prescribed:  p,. p ., T . T  , Rä, R., c  . r roa  oj'  oa  oj  a  j  pa' 
c .. 
PJ 

From the definition of the ratio of specific heats: 

CP4U 

CpöL- R, ^cu Ä" 5— (A-l) 
*       Cp 

y.    = Sll  (A-2) 
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From the isentropic pressure ratio equation: 

Af* = 
Otf," 

p * - 

(A-3) 

(A-4) 

Differentiating eqs.   (A-3)   and  (A-4)  with respect  to p 

dM 
ci P*J "8flL        P*J  Möü 

(A-5) 

(A-6) 

From the energy equation : 

TV = '0<wT/ + yf,+ ^M^) (A-7) 

Use of the energy equation (and eqs. A—3 and A—4) in this 
form implies that the specific heats are invariant over the 
range of temperature from 0 to T0, whereas in Section V the 
total temperature was defined by assuming that cp is constant 
from T to T0.  For rocket—air mixing, no error is involved 
in the secondary stream which is relatively low temperature. 
For the rocket—air mixing experiments of Refs. 6 and 7, 
Tj £ 1100°K, and the error in Tj caused by using eq. (A-8) 
is less than 1%. 
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Differentiating eqs. (A-7) and (A-8) with respect to p: 

2 

d PVJ      T^«,     d P* 
(A-9) 

(A-10) 

From the definition of the Mach number: 

et*, Ä *7<U (?*> RäJTLj (A-1X) 

Differentiating eqs. (A-ll) and (A-12) with respect to p : 

* 

* 

^±-   Jht    dlV + L Mj^y   (=>    d"^ (A-13)* 
dPw        M*  dp*       * «*    *^*Jrw 

dp*        Mj    dPw     ^"ZT ^P* 
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From the perfect gas law; 

Differentiating eqs. (A—15) and (A-16) with respect to p : 

4-  * (A-17) 
d pw     Ta- d Pysi    R^T", A- < du 

I Ü = -5- ÜL4- <A-18)* 
A        J 

2.   Duct Wall Equations 

The duct wall is assumed to be represented by the 

following pair of equations, where the constantsC, - C- and 

x are specified: 

r* * C, +■ Cz^ + Cj *.*+ C+ x3+ Gsxf 
X*  — ^e    (A-19a) 

•     ST. Cfc   +   C7 £    , *  ^ ^e    (A-19b) r, 

Differentiating eqs.   (A-19a)   and   (A-19b)   with respect  to x: 

O ^ (A-20a)* 

—~  Ä C7      s   # >Xfc (A-20b)* 
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3.  Mixing Zone Property Equations 

The mixing zone total temperatures, specific heats 

and gas constants are prescribed (Section V): 

To - "Te (c) <A-21> 

CP   "   CPVW (A-22) 

j^    =     f^(c) (A-23) 

These equations are also differentiated with respect to C 

to provide dT /dC, dc /dC and dR/dC. 

4.   First Regime Equations 

From Section V, the equations for the mixing zone 

velocity and composition are: 

U-~ «-CU+ xC'* «•*-^)(itj-u.^ (A-24)* 

(A-25)* 

Differentiating eqs.   (A—24)   and   (A—25): 

    — O (A-26) 

(A-28)* 

166 



AEDC-TR-68-270 

ft = x(^-^X- ^>- (rip) 

6n      b     ^    b</ 

■K^Mr2?) 

* 

n =° 
(A-31) 

(A-32) 

(A-33) 

From eqs. (A-21) - (A—23) one obtains dT /dC, dc /dC, and 

dR/dCf and 

 =■ L   =-      -TT\   = O (A-34) 
ZK &*          ^x 

£Ek =- t£t = AS. ^a                      cA-35) 
fcP*J £Pw             ^Pw 

an *** dc 
(A-36) 

(A-37) 

^c-       ^ dc (A-38) 
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£>To SC d"T0 

£b £b as 
^Cp _ ^C acP 
£b £b dC 

^R  _ £C JR 
£fe £b dC 

eFVi    &p^     2-Cp8 

(A-39) 

(A-40) 

(A-41) 

The mixing zone temperature, T, is given by the energy 
equation: 

Differentiating eq. (A—42), one obtains 

(A-44) 

55 - ^rszH^V    ^      (A"5) 
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-J??^* -a £b 9 (A-46) 

The mixing zone density is given by 

Differentiating eq. (A-47), one obtains 

4 — Srfr JQL+.T ^ 

Equations (A—24) — (A—51) completely specify the terms 

which appear in the mixing zone integrals of the coeffi- 

cients F, G and H. 

The mixing zone shear stress, T , is given by 

eq. (44a) of Section VI: 

(A-47) 

(A-48) 

(A-49) 

(A-50) 

(A-51) 

*m - f kx Pm (U*-Uj)\("» " "o)| (44a) 
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where the half-radius density, p , is evaluated from eq. (A-47) 

at C = J and u = J (u. + u ).  The first regime mixing zone 
m        J     a. 

constant, kT, is given by the modified Donaldson and Gray 

equation (eq. 42, Section VI), 

kT = Ä 007ja £6 -h 0.34- e*p£3.4Z MW
2)J   (A-52) 

where H is the Mach number corresponding to u and C = £. m m 
In calculating M . the variables TV,, R.. and c^« are deter- m mm     pm 
mined by eqs. (A-21) - (A-23) and (A-42).  The definition 

for 7  (-y = c /(c  — R ))then permits determination of m  \m   pm  pm   m 
M  from: 

V 
*m Km Tm) (A-53) 

5,   Second Regime Equations 

The mixing zone velocity is given by (Section^) : 

The mixing zone composition, C, is given by 

C =■ -^ Cc ("/ + Co S TT -g") (A-55) 

where C is determined by eq. (25a) (Section V): 

The velocities u and u. are given by eqs. (A-ll) and 
a     j 

(A-12).  Differentiating eq. (A-54): 

- = o 
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i- Jiö ■+■ COS  77"" © dlL, <u 

dP*, 
(A-58) 

i-vo+«- -« 

Ü = K"'" "-)(TT &) *'" <T ft 

(A-59) 

(A-60) 

Differentiating eq.   (A-56),   one obtains 

(A-61) 

ÄCr I 

dPw        («*-«-j) 
Cc^i + ^ ^da 

apw 
(I- Cc) ^ 

' d Pw . 

^C, I 

Differentiating eq.   (A-55),   one  obtains 

(A-62) 

(A-63) 

(A-64) 

=     £(/+ COS 7T b^Pw 
(A-65) 
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^rpt)»^(7rj) ^c „ c, 

Equations (A-21) - (A-23), (A-34) and (A-39) 

(A-41) are applicable in this regime.  In addition, 

<STo *C   dji 
«äPw * &P»I   JQ 

ifL = AC      jCp 

^p*l *P»i   dC 

fcR   _ *£ d* 
^p*/ ÖP»I  eiC 

am _ *>C     ATo 
£U.t ÄU.C dc 

^Cp   _ . frC   jcP 

ÄU.B. <&U<t dC 

i£L = . ä5 aR_ 
&ULC      ötLcic 

(A-66) 

(A-67) 

(A-68) 

(A-69) 

(A-70) 

(A-71) 

(A-72) 

(A-73) 
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The mixing zone temperature is given by eq. (A-42). 

Differentiating eq. (A-42), one obtains eq. (A-46) and 

S3- =: O (A-74) 

The mixing zone density is given by eq. (A-47). 

Differentiating eq. (A-47), one obtains eqs. (A-48) and 

(A-51) and 

_r_fRjz + 7-^\ a? 
£Pw 

ä? 
£U.c 

* 

prR|L + T*R 
RT\    aiLc. &ULiJ (A"78) * 

The mixing zone shear stress is given by eq. (44b) 

of Section VI: 

The density, p , is calculated at u = i(u  + u  )   and rm' m  a c   a 
cL - 1/2 <c„. m       c 
The second regime mixing constant, k-.j is given by 

(44b)* 
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^s C.O//[0.66+434- «*p(^3.4Z M£JJ    (A-79) 

where H    is calculated with eq.   (A-53). 
in 

6.   Third Regime Equations 

The mixing zone velocity is given by (Section V): 

CL = &W +■ HL fcc -Uq)Q+ GOSTT-fr) (A-80) 

The mixing zone composition is 

C =• G* +• 14-CCt- CwX'+ cos 7r vw ) CA-81) 

where 
— Uc-U*, 
Cr    -       7~*— <A~56> 

* 

'J 

and 

r =.     **£   lj£± (A-82) 
u: - u 

J 

d 

Differentiating eq. (A-80): 

The velocities u and u. are given by eqs. (A—11) and (A—12). 
a     j 

(A-83) 

TT = <-> CA-84) — Q -. _..* 
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£>   >/z(,-cos IT %) 

Differentiating eq.   (A—56),   one obtains 

£Ce. a   &Cft    =0 

£C. 
öp* 
 ! \r   ^Nda^    p-   da/ 

£Ct I 

Differentiating eq.   (A-82),   one  obtains 

aCw        ^C VJ 

&K d U-c 

^CVM 

= o 

(A-85) 

(A-86) 

(A-87) 

(A-88) 

(A-89) 

(A-90) 

<*PW '^«.-O 5W^^"C^PJ <A-9I> 

^Cw   _ 
^ U.w      (US ~ "*) 

(A-92) 
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Differentiating eq.   (A-81),   one obtains 

* -IS -ifc^M9*M) &   — 

^T0   ä 

3>X 

£PW *P* dc 

£C    dT-0 

*£La 
*£   dcp 

^F*i  *FV dC 

(A-94) 

äUc     ^ 
W/ ölte 

Equations (A-21) - (A-23) are applicable to the 

third regime.  The derivatives of the mixing zone gas 

properties are: 

(A-97) 

(A-98) 

(A-99) 

(A-100) 

(A-101) 
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&Cp    _       ^C     d  C, 

£u.c ^ac.   d C 
(A-102) 

^S±   =    i£.    l^P (A-103) 

S - ra ac (A-104) 

^U.c~ ä^C^C (A-106) 

^U.*      biXvJZ <A-107> 
The mixing zone temperature is given by the 

energy equation  (eq.  A-42).     Differentiating eq.   (A-42)   one 

obtains eqs.   (A-75)   and  (A-76)   and 

jäT    aöfTo       J (oiLC^—        LL2" ^C^\ (A-109) 

The mixing zone density is given by eq. (A-47). 

Differentiating eq. (A-47), one obtains eqs. (A-77) and 

(A-78) and 
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^"   RT^^^T5ä«) (A-U1> 

The mixing zone shear stress is given by eq. (44c) 

of Section VI, 

The density, p„, is calculated at u = i(u + u ) and C - _   _     m mew      m 
£(C + C ).  The third regime mixing constant, kTTT, is the 

C      W 111 
same as k _, and is calculated with eq. (A—79) . 
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APPENDIX II 

AUXILIARY FUNCTIONS FOR 2-D CORE THEORY 

1        In this appendix the auxiliary functions required 

for evaluation of the coefficients F, G and H (Section XII) 

are presented.  Host of the auxiliary functions are the same 

as those for the 1—D Core Theory (Appendix I).  Consequently, 

only those functions which differ from the 1-D Core Theory 

are presented here.  As in Appendix I, the equations for the 

parameters which appear directly in the coefficients F, G 

and H are denoted by an asterisk at the equation number. 

As was the case in evaluating the auxiliary 

functions for the first regime of the 1—D Core Theory, the 

variables (x, p , r., b) are considered to be independent. 

1. Isentropic Stream Equations 

The secondary stream velocity, u , is calculated 

from eq. (A—11).  The inviscid core velocity at r., V., 

is computed from eq. (A—12) by replacing u. by V-. 

Similarly, dV.,/dp is calculated with eq. (A-14).  The 

density at r., p., is obtained from eq. (A—16) by replacing 

pH by p..  Similarly, dp./dp is calculated from eq. (A—18). 

2. Velocity Profile Equation 

The mixing zone velocity  is calculated from 

U.=  U^-h  ti(l+CCSir  VlIi^Qli-tJL^    (A-24a) 

where 

U{    —  V{    COS    ©£ (A-112)* 
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The normal velocity component at r^  is given by 

CTl   -\Ji     S£> Bl (A-113)* 
Differentiating eq. (A—24a), one obtains 

&UL   _ 

an 

* 

U-«.^i-'*yr^?.)-.n^SJt)       (AW 

Equations (A—114) — (A—116) contain partial derivatives 

du./dx, du./dp , and du./är. which must be obtained from 

the method of characteristics solution of the inviscid 

core flow (Section XIII).  These derivatives are presented 

in the next section. 

3.   Partial Derivatives at Inner Mixing Zone Boundary 

One obtains from the method of characteristics 

solution (Section XIII) the partial derivatives du/dx, 

du/dr, öp/dxj and dp/dr.  It is important to recognize that 

these derivatives are obtained from a system in which the 
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independent variables are x and r.  Thus, these derivatives 

will be denoted by 
&LL\ 4U,i   £p 

and ^P with 

the subscript denoting the variable held constant during 

the differentiation. 

The derivatives appearing in eqs. (A—114) — (A—116) 

are used in a system where the independent variables are 

(x, Pw, ri), thus 

Sill 
6jt 

^UL, 

One can write, in general 
x-Si ^fv 

6U- 
&r- 6r 4- 

and 

ax r,P ^P 
Thus one can compute the necessary derivatives from 

$\JLL 

and 

^£ *"il^t 6* 

h^\ ^ar 
*>Ps w 

      it 

The derivative must now be evaluated to 

(A-118) 

(A-119) 

solve eqs. (A-118) and (A-119).  Differentiating eq. (A-112) 
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SÜLL 

&P* *,n + C0S6>d' (A-120) 

From the Bernoulli  equation, 

öV: 
<^Prt x>r: 

_ dVi L_ 
d Pw       ** ^6 

(A-120a) 

<*Pw 

The derivative ^^I^öRA»IV v» is Siven bv 

*,n ~  ~^p  (A-120b) 
The results of eqs. (A-118) - (A-120) allow the solution of 

eqs. (A—114) — (A—116) for the necessary derivatives. 

4.   Mixing Zone Temperature 

The mixing zone temperature is assumed to be given 

by eq. (A-42).  To be correct, the kinetic energy should be 
2 2 represented by V rather than u ;   therefore, use of eq. 

(A-42) implies that the flow angles in the mixing zone are 

not large, i.e., cos 6^ 1.  As discussed in Section X, the 

system of differential—integral equations was derived on 

the basis that cos 0 ft 1; therefore, use of eq. (A-42) does 

not further limit the validity of the 2-D Core Theory. 

All of the derivatives of the temperature are 

the same as in Appendix I, with the following exception: 

UL 

67C 
(A-121) 
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5.  Mixing Zone Shear Strass 

The shear stress, T . Is given by 

where p^ is evaluated at u , and 
■m m 

um = !£ (y-i + u~^) (A-123) 
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APPENDIX III 
INPUT AND PRINTOUT PARAMETERS FOR COMPUTER PROGRAMS 

This appendix lists the parameters which must be 

prescribed for operation of both the 1—D Core Theory and 

2—D Core Theory computer programs.  The flow field variables 

which are printed out are also listed. 

1.   1-D Core Theory Program 

Input parameters — The following parameters must 

be prescribed: 

1. Incompressible mixing zone constants, k _., 
koii' and koiir 

2. Integration step size, Ax, and maximum x (L). 

3. Primary nozzle radius, r . 

4. Initial static pressure, Pwl« 

5. Constants in duct wall equation, C, — C-, x . 

6. Inviscid stream stagnation conditions, p  , oa 
poj' Toa' Toj' 

7. Inviscid stream gas properties, c  , c ., R , 

8. Mixing zone property functions:  T (C), c (C), 

R(C) (an array of 20 values from C = 0 to C - 1). 

Printout parameters — The following parameters are 

printed out at each axial station in the first regime 

computation: 

1. Wall pressure, p . 

2. Secondary stream Mach number, M . 
SL 
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3. Primary stream Mach number, 11.. 

4. Width of mixing zone, b. 

5. Radius of inner mixing zone boundary, r.. 

6. Mixing zone growth rate, db/dx. 

7. Total stream thrust. 

8. (r± + b)/rw. 

9. Species conservation parameter, Q. 

10.  Coefficient determinant, |D|. 

The following parameters are printed out at each 

axial station in the second regime computation: 

1. Wall pressure, p . 

2. Secondary stream Mach number, M . 

3. Width of mixing zone, b. 

4. Growth rate of mixing zone, db/dx. 

5. Centerline velocity ratio, u /u .. c J 
6. Centerline composition, C . 

7. b/V 

8. Total stream thrust. 

9. Species conservation parameter, Q. 

10. Coefficient determinant, |D|. 

11. Choking parameter, Ch. 

The following parameters are printed out at each 

axial station in the third regime computation: 

1. Wall pressure, p . 

2. Centerline velocity ratio, u /u.. 
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3. Centerline composition, C . 

4. Wall velocity ratio, u /u . 

5. Wall composition, C . 

6. Centerline Mach number, M . 

7. Wall Mach number, M . 

8. Total stream thrust. 

9. Species conservation parameter, Q. 

10. Coefficient determinant, |D| . 

11. Choking parameter, Ch. 

2.   2-D Core Theory Program 

Input parameters — The input parameters are the 

same as for the 1—D Core Theory program, with the addition 

that the flow conditions across the primary nozzle exit 

plane must be prescribed. An array (typically 11 points) of 

(p/p ., 6) vs. r is used (for 0 < r < r ). 

Printout parameters — The following parameters are 

printed out at each axial station in the first regime compu- 

tation: 

1. Wall pressure, p . 

2. Secondary stream Mach number, M . 

3. Mach number at inner boundary of mixing 

zone, M.. 

4. Width of mixing zone, b. 

5. Radius of inner mixing zone boundary, r.. 

6. Mixing zone growth rate, db/dx. 

7. Total stream thrust. 

8. (r. + b)/r ,. v 1       w 
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9.  Species conservation parameter, Q. 

10. Coefficient determinant, |D| . 

11. Flow angle at inner mixing zone boundary, 6.. 

One also has the option of printing out a radial array of 

(p/P0.j> 0) across the inviscid core flow. 

The printout parameters in the second and third 

mixing regimes are the same as for the 1—D Core Theory 

program. 
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